Skip to main content

Hydrodynamic Imaging by Blind Mexican Cavefish

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

Blind Mexican cavefish (Astyanax mexicanus) live in complete darkness in underground streams and pools. These eyeless fish use hydrodynamic imaging to sense their surroundings. Hydrodynamic imaging involves fish using their mechanosensory lateral line system to sense changes in the water flows around their body caused by the presence of nearby objects. This allows them to sense detailed information about their surroundings as they move through complex environments. The fluid dynamics associated with this remarkable ability have been revealed using experimental flow measurements and computational modelling. Measurements of the fish’s behavior and of the flow fields around the fish show that hydrodynamic imaging has a short range, of the order of 10 % of the fish’s body length, and that fish need fast reactions in order to use it for collision avoidance. Due to the fluid dynamics of the flow fields involved, this sensory range is not increased when fish swim faster, contrary to previous expectations. This chapter summarises the behaviors and fluid dynamics involved with hydrodynamic imaging as used by blind cavefish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Breder CM (1943) Problems in the behavior and evolution of a species of blind cave fish. Trans N Y Acad Sci 168–176

    Google Scholar 

  • von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol (A) 143(3):369–374

    Article  Google Scholar 

  • Coombs S, Montgomery JC (1999) The enigmatic lateral line system. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 319–362

    Chapter  Google Scholar 

  • Denton EJ, Gray J (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond Ser B 218(1210):1–26

    Article  CAS  Google Scholar 

  • Dijkgraaf S (1962) Functioning and significance of lateral-line organs. Biol Rev Camb Philos Soc 38(1):51–105

    Article  Google Scholar 

  • Dubois AB, Cavagna GA, Fox RS (1974) Pressure distribution on body surface of swimming fish. J Exp Biol 60(3):581–591

    CAS  PubMed  Google Scholar 

  • Gregson JNS, Burt de Perera T (2007) Shoaling in eyed and blind morphs of the characin Astyanax fasciatus under light and dark conditions. J Fish Biol 70(5):1615–1619

    Article  Google Scholar 

  • Hassan ES (1985) Mathematical-analysis of the stimulus for the lateral line organ. Biol Cybern 52(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol (A) 159(5):701–710

    Article  CAS  Google Scholar 

  • Hassan ES (1992a) Mathematical-description of the stimuli to the lateral line system of fish derived from a 3-dimensional flow field analysis: I the cases of moving in open water and of gliding towards a plane surface. Biol Cybern 66(5):443–452

    Article  Google Scholar 

  • Hassan ES (1992b) Mathematical-description of the stimuli to the lateral line system of fish derived from a 3-dimensional flow field analysis: II the case of gliding alongside or above a plane surface. Biol Cybern 66(5):453–461

    Article  Google Scholar 

  • Hassan ES, Abdel-Latif H, Biebricher R (1992) Studies on the effects of Ca++ and Co++ on the swimming behavior of the blind Mexican cave fish. J Comp Physiol (A) 171(3):413–419

    Article  Google Scholar 

  • Hubbs CL, Innes WT (1936) The first known blind fish of the family Characidae: a new genus from Mexico. Occas Paper Mus Zool Univ Mich 342:1–9

    Google Scholar 

  • Jeffery WR (2001) Cavefish as a model system in evolutionary developmental biology. Dev Biol 231(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Jeffery WR (2005) Adaptive evolution of eye degeneration in the Mexican blind cavefish. J Hered 96(3):185–196

    Article  CAS  PubMed  Google Scholar 

  • Jeffery WR, Martasian DP (1998) Evolution of eye regression in the cavefish Astyanax: apoptosis and the pax-6 gene. Am Zool 38(4):685–696

    CAS  Google Scholar 

  • Jeffery WR, Strickler AG, Yamamoto Y (2003) To see or not to see: evolution of eye degeneration in Mexican blind cavefish. Integr Comp Biol 43(4):531–541

    Article  PubMed  Google Scholar 

  • John KR (1957) Observations on the behavior of blind and blinded fishes. Copeia 2:123–132

    Article  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Chapter  Google Scholar 

  • Kuiper JW (1967) Frequency characteristics and functional significance of the lateral line organ. In: Cahn PH (ed) Lateral line detectors. Indiana University Press, Bloomington, pp 105–121

    Google Scholar 

  • Lauder GV, Tytell ED (2005) Hydrodynamics of undulatory propulsion. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23. Academic Press, USA, pp 425–468

    Google Scholar 

  • McHenry MJ, Strother JA, van Netten SM (2008) Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. J Comp Physiol (A) 194(9):795–810

    Article  Google Scholar 

  • Mitchell RW, Russell WH, Elliot W (1977) Mexican eyeless characin fishes, genus Astyanax : Environment, distribution, and evolution. Spec Publ Mus Texas Tech Univ 12:1–89

    Google Scholar 

  • Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environ Biol Fishes 62(1–3):87–96

    Article  Google Scholar 

  • Parzefall J (1983) Field observation in epigean and cave populations of the Mexican characid, Astyanax mexicanus (Pisces, Characidae). Mem Biospeol 10:171–176

    Google Scholar 

  • Patton P, Windsor S, Coombs S (2010) Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol (A) 196(11):853–867

    Article  Google Scholar 

  • Burt de Perera T (2004a) Fish can encode order in their spatial map. Proc R Soc Lond Ser B 271(1553):2131–2134

    Article  Google Scholar 

  • Burt de Perera T (2004b) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68:291–295

    Article  Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) Blind fish can school. Science 194(4268):963–965

    Article  CAS  PubMed  Google Scholar 

  • Poulson TL (1963) Cave adaptation in amblyopsid fishes. Am Midl Nat 70(2):257–290

    Article  Google Scholar 

  • Romero A (1985) Ontogenetic change in phototactic responses of surface and cave populations of Astyanax fasciatus (Pisces, Characidae). Copeia 4:1004–1011

    Article  Google Scholar 

  • Russell IJ, Roberts BL (1974) Active reduction of lateral-line sensitivity in swimming dogfish. J Comp Physiol 94(1):7–15

    Article  Google Scholar 

  • Schemmel C (1967) Vergleichende untersuchungen an den hautsinnesorganen ober und unterirdisch lebender Astyanax-Formen. Z Morph Tiere 61:255–316

    Google Scholar 

  • Schiffman HR (1996) Sensation and perception: an integrated approach, 4th edn. Wiley, New York

    Google Scholar 

  • Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall- following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol (A) 195(3):225–240

    Article  Google Scholar 

  • Tan D (2007) Can blind cave fish compensate for decreased lateral line sensitivity when approaching an obstacle head-on. BSc honors, University of Auckland

    Google Scholar 

  • Teghtsoonian R (1971) On the exponents in Stevens’ law and the constant in Ekman’s law. Psychol Rev 78(1):71–80

    Article  CAS  PubMed  Google Scholar 

  • Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol (A) 157(6):837–843

    Article  CAS  Google Scholar 

  • Teyke T (1988) Flow field, swimming velocity and boundary layer: Parameters which affect the stimulus for the lateral line organ in blind fish. J Comp Physiol (A) 163(1):53–61

    Article  CAS  Google Scholar 

  • Teyke T (1989) Learning and remembering the environment in the blind cave fish Anoptichthys jordani. J Comp Physiol (A) 164(5):655–662

    Google Scholar 

  • Teyke T (1990) Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol 35(1):23–30

    Article  CAS  PubMed  Google Scholar 

  • Van Trump WJ, Coombs S, Duncan K, McHenry MJ (2010) Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res 261(1–2):42–50

    Article  PubMed  Google Scholar 

  • Weihs D (1974) Energetic advantages of burst swimming of fish. J Theor Biol 48(1):215–229

    Article  CAS  PubMed  Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol (A) 143(3):375–381

    Article  Google Scholar 

  • Windsor SP (2008) Hydrodynamic imaging by blind Mexican cave fish. PhD thesis, University of Auckland

    Google Scholar 

  • Windsor SP, McHenry MJ (2009) The influence of viscous hydrodynamics on the fish lateral-line system. Integr Comp Biol 49(6):691–701

    Article  PubMed  Google Scholar 

  • Windsor SP, Tan D, Montgomery JC (2008) Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). J Exp Biol 211(18):2950–2959

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010a) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. J Exp Biol 213(22):3819–3831

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010b) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. J Exp Biol 213(22):3832–3842

    Article  PubMed  Google Scholar 

  • Windsor SP, Paris J, Burt de Perera T (2011) No role for direct touch using the pectoral fins, as an information gathering strategy in a blind fish. J Comp Physiol (A) 197(4):321–327

    Article  Google Scholar 

  • Wu G, Yang Y, Zeng L (2007) Kinematics, hydrodynamics and energetic advantages of burst-and-coast swimming of koi carps (Cyprinus carpio koi). J Exp Biol 210(12):2181–2191

    Article  PubMed  Google Scholar 

  • Yasuda K (1973) Comparative studies on swimming behavior of blind cave fish and goldfish. Comp Biochem Physiol 45(2A):515–527

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane P. Windsor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Windsor, S.P. (2014). Hydrodynamic Imaging by Blind Mexican Cavefish. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_4

Download citation

Publish with us

Policies and ethics