Skip to main content

Gaussian Topographic Co-clustering Model

  • Conference paper
Advances in Intelligent Data Analysis XII (IDA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8207))

Included in the following conference series:

Abstract

The visualization of the clusters obtained by a partitioning procedure is very informative as this helps to a better overview of the contents of a data table. For co-clustering, the latent block mixture model is very effective. We propose to define generative self-organizing maps with this model for Gaussian blocks. A perspective is the analysis and the visualization of continuous data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: Self-organizing maps. Springer (1997)

    Google Scholar 

  2. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 3(8), 651–666 (2010)

    Article  Google Scholar 

  3. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: A principled alternative to the self-organizing map. In: Mozer, M.C., Jordan, M.I., Petsche, T. (eds.) Advances in Neural Information Processing Systems 9, pp. 354–360. The MIT Press, Cambridge (1997)

    Google Scholar 

  4. Kabán, A., Girolami, M.: A combined latent class and trait model for analysis and visualisation of discrete data. IEEE Trans. Pattern Anal. and Mach. Intell., 859–872 (2001)

    Google Scholar 

  5. Tino, P., Nabney, I.: Hierarchical gtm: Constructing localized nonlinear projection manifolds in a principled way. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 639–656 (2002)

    Article  Google Scholar 

  6. Vellido, A.: Selective smoothing of the generative topographic mapping. IEEE Transactions on Neural Networks 14(3), 847–852 (2003)

    Article  Google Scholar 

  7. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley and Sons, New York (2000)

    Book  MATH  Google Scholar 

  8. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)

    Article  Google Scholar 

  9. Hautaniemi, S., Yli-Harja, O., Astola, J., Kauraniemi, P., Kallioniemi, A., Wolf, M., Ruiz, J., Mousses, S., Kallioniemi, O.-P.: Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps. Mach. Learn. 52(1-2), 45–66 (2003)

    Article  Google Scholar 

  10. Newman, A.M., Cooper, J.B.: AutoSOME: a clustering method for identifying gene expression modules without prior knowledge of cluster number. BMC Bioinformatics 11, 117 (2010)

    Article  Google Scholar 

  11. Shannon, W., Culverhouse, R., Duncan, J.: Analyzing microarray data using cluster analysis. Pharmacogenomics 4(1), 41–52 (2003)

    Article  Google Scholar 

  12. Govaert, G., Nadif, M.: Clustering with block mixture models. Pattern Recognition 36(2), 463–473 (2003)

    Article  Google Scholar 

  13. Nadif, M., Govaert, G.: Model-Based Co-clustering for Continuous Data. In: ICMLA, pp. 175–180. IEEE Computer Society (2010)

    Google Scholar 

  14. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from incomplete data via the EM algorithm. J. Royal Statist. Soc. Ser. B 39, 1–38 (1977)

    Google Scholar 

  15. Govaert, G., Nadif, M.: An EM algorithm for the block mixture model. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 643–647 (2005)

    Article  Google Scholar 

  16. Neal, R.M.: Bayesian Learning for Neural Networks. Lecture Notes in Statistics, vol. 118. Springer (1996)

    Google Scholar 

  17. Yamaguchi, N.: Variational bayesian inference with automatic relevance determination for generative topographic mapping. In: SCIS-ISIS 2012, pp. 2124–2129 (2012)

    Google Scholar 

  18. Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12), 6745–6750 (1999)

    Article  Google Scholar 

  19. Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-1(2), 224–227 (1979)

    Google Scholar 

  20. Rousseeuw, P.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Priam, R., Nadif, M., Govaert, G. (2013). Gaussian Topographic Co-clustering Model. In: Tucker, A., Höppner, F., Siebes, A., Swift, S. (eds) Advances in Intelligent Data Analysis XII. IDA 2013. Lecture Notes in Computer Science, vol 8207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41398-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41398-8_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41397-1

  • Online ISBN: 978-3-642-41398-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics