Interactive Discovery of Interesting Subgroup Sets

  • Vladimir Dzyuba
  • Matthijs van Leeuwen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8207)

Abstract

Although subgroup discovery aims to be a practical tool for exploratory data mining, its wider adoption is hampered by redundancy and the re-discovery of common knowledge. This can be remedied by parameter tuning and manual result filtering, but this requires considerable effort from the data analyst. In this paper we argue that it is essential to involve the user in the discovery process to solve these issues. To this end, we propose an interactive algorithm that allows a user to provide feedback during search, so that it is steered towards more interesting subgroups. Specifically, the algorithm exploits user feedback to guide a diverse beam search. The empirical evaluation and a case study demonstrate that uninteresting subgroups can be effectively eliminated from the results, and that the overall effort required to obtain interesting and diverse subgroup sets is reduced. This confirms that within-search interactivity can be useful for data analysis.

Keywords

Interactive data mining pattern set mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atzmüller, M.: Exploiting background knowledge for knowledge-intensive subgroup discovery. In: Proceedings of IJCAI 2005, pp. 647–652 (2005)Google Scholar
  2. 2.
    Atzmüller, M., Puppe, F.: Semi-automatic visual subgroup mining using vikamine. Journal of Universal Computer Science 11(11), 1752–1765 (2005)Google Scholar
  3. 3.
    Bailey, J., Dong, G.: Contrast data mining: Methods and applications. Tutorial at ICDM 2007 (2007)Google Scholar
  4. 4.
    De Bie, T.: An information theoretic framework for data mining. In: Proceedings of KDD 2011, pp. 564–572 (2011)Google Scholar
  5. 5.
    Dong, G., Zhang, X., Wong, L., Li, J.: CAEP: Classification by aggregating emerging patterns. In: Arikawa, S., Nakata, I. (eds.) DS 1999. LNCS (LNAI), vol. 1721, pp. 30–42. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Galbrun, E., Miettinen, P.: A Case of Visual and Interactive Data Analysis: Geospatial Redescription Mining. In: Instant Interactive Data Mining Workshop at ECML-PKDD 2012 (2012)Google Scholar
  7. 7.
    Gamberger, D., Lavrac, N.: Expert-guided subgroup discovery: Methodology and application. Journal of Artificial Intelligence Research 17, 501–527 (2002)MATHGoogle Scholar
  8. 8.
    Gamberger, D., Lavrac, N., Krstacic, G.: Active subgroup mining: a case study in coronary heart disease risk group detection. Artificial Intelligence in Medicine 28(1), 27–57 (2003)CrossRefGoogle Scholar
  9. 9.
    Garriga, G.C., Kralj, P., Lavrac, N.: Closed sets for labeled data. Journal of Machine Learning Research 9, 559–580 (2008)MathSciNetMATHGoogle Scholar
  10. 10.
    Goethals, B., Moens, S., Vreeken, J.: MIME: a framework for interactive visual pattern mining. In: Proceedings of KDD 2011, pp. 757–760 (2011)Google Scholar
  11. 11.
    Herrera, F., Carmona, C.J., González, P., Jesus, M.J.: An overview on subgroup discovery: foundations and applications. Knowledge and Information Systems 29(3), 495–525 (2011)CrossRefGoogle Scholar
  12. 12.
    Klösgen, W.: Explora: A Multipattern and Multistrategy Discovery Assistant. In: Advances in Knowledge Discovery and Data Mining, pp. 249–271 (1996)Google Scholar
  13. 13.
    Kralj Novak, P., Lavrač, N., Webb, G.I.: Supervised descriptive rule discovery: A unifying survey of contrast set, emerging pattern and subgroup mining. Journal of Machine Learning Research 10, 377–403 (2009)MATHGoogle Scholar
  14. 14.
    van Leeuwen, M., Knobbe, A.: Diverse subgroup set discovery. Data Mining and Knowledge Discovery 25, 208–242 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Li, R., Kramer, S.: Efficient redundancy reduced subgroup discovery via quadratic programming. In: Ganascia, J.-G., Lenca, P., Petit, J.-M. (eds.) DS 2012. LNCS, vol. 7569, pp. 125–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Rüping, S.: Ranking interesting subgroups. In: Proceedings of ICML 2009, pp. 913–920 (2009)Google Scholar
  17. 17.
    Tuzhilin, A.: On subjective measures of interestingness in knowledge discovery. In: Proceedings of KDD 1995, pp. 275–281 (1995)Google Scholar
  18. 18.
    Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In: Komorowski, J., Żytkow, J.M. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vladimir Dzyuba
    • 1
  • Matthijs van Leeuwen
    • 1
  1. 1.Department of Computer ScienceKU LeuvenBelgium

Personalised recommendations