Skip to main content

Introduction and Preview

  • Chapter

Abstract

In this chapter, the author first sketches the context in which the topic of this book should be considered. In a society which is becoming more complex and interconnected at a very fast rate, the notions of trust and security are of ever greater importance, in particular in our digital lives. This chapter presents on a high level the basic methods and concepts of modern cryptography which allow us to reduce information security problems such as online authentication and secure data transmission, to physical problems such as securely storing a short secret key in a digital hardware platform. The main topic of this book, i.e., physically unclonable functions, are an innovative solution to the latter and are hence able to act as a highly secure physical root of trust in an information security system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boneh, D., DeMillo, R. A., & Lipton, R. J. (1997). On the importance of checking cryptographic protocols for faults. In Lecture notes in computer science (LNCS): Vol. 1233. Advances in cryptology—EUROCRYPT 1997 (pp. 37–51). Berlin: Springer.

    Google Scholar 

  2. Diffie, W., & Hellman, M. E. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22(6), 644–654.

    Article  MathSciNet  MATH  Google Scholar 

  3. Fischer, V., & Drutarovský, M. (2002). True random number generator embedded in reconfigurable hardware. In Lecture notes in computer science (LNCS): Vol. 2523. Workshop on cryptographic hardware and embedded systems—CHES 2002 (pp. 415–430). Berlin: Springer.

    Chapter  Google Scholar 

  4. Kerckhoffs, A. (1883). La cryptographie militaire. Journal des Sciences Militaires, IX, 5–83.

    Google Scholar 

  5. Kocher, P. C. (1996). Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In Lecture notes in computer science (LNCS): Vol. 1109. Advances in Cryptology—CRYPTO 1996 (pp. 104–113). Berlin: Springer.

    Google Scholar 

  6. Kocher, P. C., Jaffe, J., & Jun, B. (1999). Differential power analysis. In Lecture notes in computer science (LNCS): Vol. 1666. Advances in cryptology—CRYPTO 1999 (pp. 388–397). Berlin: Springer.

    Google Scholar 

  7. Lenstra, A. K., Hughes, J. P., Augier, M., Bos, J. W., Kleinjung, T., & Wachter, C. (2012). Ron was wrong, Whit is right. Cryptology ePrint Archive, Report 2012/064.

    Google Scholar 

  8. Menezes, A. J., Vanstone, S. A., & Van Oorschot, P. C. (1996). Handbook of applied cryptography. Boca Raton: CRC Press.

    Book  Google Scholar 

  9. Quisquater, J.-J., & Samyde, D. (2001). ElectroMagnetic analysis (EMA): measures and counter-measures for smart cards. In Lecture notes in computer science (LNCS): Vol. 2140. International conference on research in smart cards—E-SMART 2001 (pp. 200–210). Berlin: Springer.

    Google Scholar 

  10. Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.

    Article  MathSciNet  MATH  Google Scholar 

  11. Schindler, W., & Killmann, W. (2002). Evaluation criteria for true (physical) random number generators used in cryptographic applications. In Lecture notes in computer science (LNCS): Vol. 2523. Workshop on cryptographic hardware and embedded systems—CHES 2002 (pp. 431–449). Berlin: Springer.

    Google Scholar 

  12. Tarnovsky, C. (2010). Deconstructing a ‘Secure’ processor. Talk at Black Hat Federal 2010. http://www.blackhat.com/presentations/bh-dc-10/Tarnovsky_Chris/BlackHat-DC-2010-Tarnovsky-DASP-slides.pdf.

  13. Tiri, K., Hwang, D., Hodjat, A., Lai, B., Yang, S., Schaumont, P., & Verbauwhede, I. (2005). Prototype IC with WDDL and differential routing—DPA resistance assessment. In Lecture notes in computer science (LNCS): Vol. 3659. Workshop on cryptographic hardware and embedded systems—CHES 2005 (pp. 354–365). Berlin: Springer.

    Chapter  Google Scholar 

  14. Torrance, R., & James, D. (2009). The state-of-the-art in IC reverse engineering. In Lecture notes in computer science (LNCS): Vol. 5747. Workshop on cryptographic hardware and embedded systems—CHES 2009 (pp. 363–381). Berlin: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maes, R. (2013). Introduction and Preview. In: Physically Unclonable Functions. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41395-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41395-7_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41394-0

  • Online ISBN: 978-3-642-41395-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics