Symmetries of Quasi-Values

  • Ales A. Kubena
  • Peter Franek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8146)


According to Shapley’s game-theoretical result, there exists a unique game value of finite cooperative games that satisfies axioms on additivity, efficiency, null-player property and symmetry. The original setting requires symmetry with respect to arbitrary permutations of players. We analyze the consequences of weakening the symmetry axioms and study quasi-values that are symmetric with respect to permutations from a  group G ≤ S n . We classify all the permutation groups G that are large enough to assure a unique G-symmetric quasi-value, as well as the structure and dimension of the space of all such quasi-values for a general permutation group G.

We show how to construct G-symmetric quasi-values algorithmically by averaging certain basic quasi-values (marginal operators).


Cooperative Game Permutation Group Marginal Operator Cooperative Game Theory Cycle Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaumont, R., Peterson, R.: Set-transitive permutation groups. Canadian Journal of Mathematics 7(1), 35–42 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brânzei, R., Dimitrov, D., Tijs, S.: Models in Cooperative Game Theory: Crisp, Fuzzy, and Multi-Choice Games. Lecture Notes in Economics and Mathematical Systems. Springer (2005)Google Scholar
  3. 3.
    Brink, R.: An axiomatization of the shapley value using a fairness property. International Journal of Game Theory 30, 309–319 (2002)CrossRefGoogle Scholar
  4. 4.
    Carnahan, S.: Small finite sets (2007)Google Scholar
  5. 5.
    David, S.: The nucleolus of a characteristic function game. Siam Journal on Applied Mathematics 17(6), 1163–1166 (1969)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Derks, J., Haller, H., Peters, H.: The selectope for cooperative games. Open access publications from maastricht university, Maastricht University (2000)Google Scholar
  7. 7.
    Dixon, J., Mortimer, B.: Permutation groups. Springer (1996)Google Scholar
  8. 8.
    Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press (2009)Google Scholar
  9. 9.
    Fulman, J.: Cycle indices for the finite classical groups (1997)Google Scholar
  10. 10.
    Gilboa, I., Monderer, D.: Quasi-value on subspaces. International Journal of Game Theory 19(4), 353–363 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gilles, R.: The Cooperative Game Theory of Networks and Hierarchies. Theory and decision library: Game theory, mathematical programming, and operations research. Springer (2010)Google Scholar
  12. 12.
    Janusz, G., Rotman, J.: Outer automorphisms of S 6. The American Mathematical Monthly 89(6), 407–410 (1982)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jordan, M.: Super-transitive group action (mathoverflow contribution),
  14. 14.
    Kalai, E., Samet, D.: On Weighted Shapley Values. International Journal of Game Theory 16(3), 205–222 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kar, A.: Axiomatization of the shapley value on minimum cost spanning tree games. Games and Economic Behavior 38(2), 265–277 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Monderer, D., Ruckle, W.H.: On the Symmetry Axiom for Values of Nonatomic Games. Int. Journal of Math. and Math. Sci. 13(1), 165–170 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Neumann, J., Morgenstern, O., Rubinstein, A., Kuhn, H.: Theory of Games and Economic Behavior. Princeton Classic Editions. Princeton University Press (2007)Google Scholar
  18. 18.
    Neyman, A.: Uniqueness of the shapley value. Games and Economic Behavior 1(1), 116–118 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Neyman, A.: Values of Games with Infinitely Many Players. Handbook of Game Theory with Economic Applications, vol. 3, ch. 56, pp. 2121–2167. Elsevier (2002)Google Scholar
  20. 20.
    Owen, G.: Values of Games with A Priori Unions. In: Henn, R., Moeschlin, O. (eds.) Mathematical Economics and Game Theory. Lecture Notes in Economics and Mathematical Systems, vol. 141, pp. 76–88. Springer, Heidelberg (1977)CrossRefGoogle Scholar
  21. 21.
    Rotman, J.: An introduction to the theory of groups. Springer (1995)Google Scholar
  22. 22.
    Shapley, L.S.: A value for n-person games. Annals of Mathematics Studies 2(28), 307–317 (1953)MathSciNetGoogle Scholar
  23. 23.
    Weber, R.: Probabilistic Values of Games. In: Roth, A. (ed.) The Shapley Value: Essays in Honor of Lloyd S. Shapley, pp. 101–120. Cambridge Univ. Press (1988)Google Scholar
  24. 24.
    Young, H.P.: Monotonic solutions of cooperative games. International Journal of Game Theory 14, 65–72 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ales A. Kubena
    • 1
  • Peter Franek
    • 2
  1. 1.Institute of Information Theory and Automation of the ASCRPragueCzech Republic
  2. 2.Institute of Information TechnologiesCzech Technical UniversityPragueCzech Republic

Personalised recommendations