Game-Theoretic Security for Bit Commitment

  • Haruna Higo
  • Keisuke Tanaka
  • Kenji Yasunaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8231)


Higo, Tanaka, Yamada, and Yasunaga (ACISP 2012) studied oblivious transfer (OT) from a game-theoretic viewpoint in the malicious model. Their work can be considered as an extension of the study on two-party computation in the fail-stop model by Asharov, Canetti, and Hazay (EUROCRYPT 2011).

This paper focuses on bit commitment, and continues to study it from a perspective of game theory. In a similar manner to the work on OT, we consider bit commitment in the malicious model. In order to naturally capture the security properties of bit commitment, we characterize them with a single game where both parties are rational. In particular, we define a security notion from a game theoretic viewpoint, and prove the equivalence between it and the standard security notion.


Cryptography game theory bit commitment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asharov, G., Canetti, R., Hazay, C.: Towards a game theoretic view of secure computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 426–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Chung, K.-M., Liu, F.-H., Lu, C.-J., Yang, B.-Y.: Efficient string-commitment from weak bit-commitment. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 268–282. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Fuchsbauer, G., Katz, J., Naccache, D.: Efficient rational secret sharing in standard communication networks. In: Micciancio (ed.) [14], pp. 419–436Google Scholar
  4. 4.
    Fudenberg, D., Tirole, J.: Game theory (3. pr.). MIT Press (1991)Google Scholar
  5. 5.
    Goldreich, O.: The foundations of cryptography, vol. 2. Basic applications. Cambridge University Press (2004)Google Scholar
  6. 6.
    Gradwohl, R.: Rationality in the full-information model. In: Micciancio (ed.) [14], pp. 401–418Google Scholar
  7. 7.
    Groce, A., Katz, J.: Fair computation with rational players. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 81–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Groce, A., Katz, J., Thiruvengadam, A., Zikas, V.: Byzantine agreement with a rational adversary. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 561–572. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Halpern, J.Y., Teague, V.: Rational secret sharing and multiparty computation: extended abstract. In: Babai, L. (ed.) STOC, pp. 623–632. ACM (2004)Google Scholar
  10. 10.
    Hazay, C., Lindell, Y.: Efficient secure two-party protocols: techniques and constructions, 1st edn. Springer-Verlag New York, Inc., New York (2010)CrossRefGoogle Scholar
  11. 11.
    Higo, H., Tanaka, K., Yamada, A., Yasunaga, K.: A game-theoretic perspective on oblivious transfer. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 29–42. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Jeffs, R.A., Rosulek, M.: Characterizing the cryptographic properties of reactive 2-party functionalities. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 263–280. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Katz, J.: Bridging game theory and cryptography: Recent results and future directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Micciancio, D. (ed.): TCC 2010. LNCS, vol. 5978. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  15. 15.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic game theory. Cambridge University Press, New York (2007)CrossRefzbMATHGoogle Scholar
  16. 16.
    Osborne, M.J., Rubinstein, A.: A course in game theory. MIT Press (1994)Google Scholar
  17. 17.
    Yasunaga, K.: Public-key encryption with lazy parties. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 411–425. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Haruna Higo
    • 1
  • Keisuke Tanaka
    • 1
  • Kenji Yasunaga
    • 2
  1. 1.Tokyo Institute of TechnologyJapan
  2. 2.Kanazawa UniversityJapan

Personalised recommendations