Advertisement

Cryptanalysis of the Quaternion Rainbow

  • Yasufumi Hashimoto
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8231)

Abstract

Rainbow is one of the signature schemes based on multivariate problems. While its signature generation and verification are fast and the security is presently sufficient under suitable parameter selections, the key size is relatively large. Recently, Quaternion Rainbow – Rainbow over quaternion ring – was proposed by Yasuda, Sakurai and Takagi (CT-RSA’12) to reduce the key size of Rainbow without impairing the security. However, a new vulnerability emerges from the structure of quaternion ring; in fact, Thomae (SCN’12) found that Quaternion Rainbow is less secure than the same-size original Rainbow. In the present paper, we further study the security of Quaternion Rainbow and get better security results than Thomae’s ones. Especially, we find that Quaternion Rainbow over even characteristic field, whose security level is estimated as about the original Rainbow of at most 3/4 by Thomae’s analysis, is almost as secure as the original Rainbow of at most 1/4-size.

Keywords

post-quantum cryptography multivariate public-key cryptosystems Rainbow quaternion ring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bardet, M., Faugère, J.C., Salvy, B., Yang, B.Y.: Asymptotic Expansion of the Degree of Regularity for Semi-Regular Systems of Equations. In: MEGA 2005 (2005)Google Scholar
  2. 2.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE Implementation of Multivariate PKCs on Modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate public key cryptosystems. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  4. 4.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Faugère, J.C.: A new efficient algorithm for computing Grobner bases (F 4). J. Pure and Applied Algebra 139, 61–88 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–2006. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Kipnis, A., Shamir, A.: Cryptanalysis of the Oil & Vinegar Signature Scheme. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–267. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – A multivariate signature scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting Parameters for the Rainbow Signature Scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Thomae, E.: Quo Vadis Quaternion? Cryptanalysis of Rainbow over Non-commutative Rings. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 361–373. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Yasuda, T., Sakurai, K., Takagi, T.: Reducing the Key Size of Rainbow Using Non-commutative Rings. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 68–83. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yasufumi Hashimoto
    • 1
  1. 1.Department of Mathematical SciencesUniversity of the RyukyusJapan

Personalised recommendations