Advertisement

Achieving Chosen Ciphertext Security from Detectable Public Key Encryption Efficiently via Hybrid Encryption

  • Takahiro Matsuda
  • Goichiro Hanaoka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8231)

Abstract

In EUROCRYPT’12, Hohenberger, Lewko, and Waters proposed a new paradigm for constructing chosen ciphertext secure public key encryption (PKE) schemes from a new concept of detectable PKE. In this paper, we propose an efficient variant of the Hohenberger-Lewko-Waters (HLW) construction, based on the techniques and results from hybrid encryption. On the technical side, our security proof avoids using the notion of nested-indistinguishability that was used in the original proof by Hohenberger et al., and we believe that what role each building block plays is clearer, leading to better understanding of the HLW paradigm.

Keywords

public key encryption key encapsulation mechanism chosen ciphertext security detectable public key encryption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145 (2001)Google Scholar
  3. 3.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Computing 33(1), 167–226 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991, pp. 542–552 (1991)Google Scholar
  7. 7.
    Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: A new approach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-ciphertext security. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 673–692. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Lin, H., Tessaro, S.: Amplification of chosen-ciphertext security. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 503–519. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  11. 11.
    Lindell, Y.: A simpler construction of CCA2-secure public-key encryption under general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 241–254. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Mol, P., Yilek, S.: Chosen-ciphertext security from slightly lossy trapdoor functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS 2009, pp. 607–616 (2009)Google Scholar
  14. 14.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990, pp. 427–437 (1990)Google Scholar
  15. 15.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008, pp. 187–196 (2008)Google Scholar
  16. 16.
    Phan, D.H., Pointcheval, D.: About the security of ciphers (Semantic security and pseudo-random permutations). In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 182–197. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Rosen, A., Segev, G.: Chosen-ciphertext security via correlated products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS 1999, pp. 543–553 (1999)Google Scholar
  20. 20.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  21. 21.
    Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takahiro Matsuda
    • 1
  • Goichiro Hanaoka
    • 1
  1. 1.Research Institute for Secure SystemsNational Institute of Advanced Industrial Science and Technology (AIST)Japan

Personalised recommendations