Allegories for Database Modeling

  • Bartosz Zieliński
  • Paweł Maślanka
  • Ścibor Sobieski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8216)

Abstract

Allegories are categories modeled upon the category of sets and binary relations (where sets are objects and binary relations are morphisms composed using joins). In this paper we present a new conceptual data modeling formalism based on the language of allegories. We show that allegories provide more convenient framework for modeling data than more traditional categorical approaches in which arrows are interpreted as functional dependencies and in which many to many or partial relationships have to be represented as spans. Finally, we demonstrate that by using allegories different than the allegory of sets and binary relations, for example the allegory of sets and lattice valued relations, one can model replicated data or data stored in a valid time temporal database.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Uml and data modeling. A Rational Software Whitepaper (2003)Google Scholar
  2. 2.
    Barr, M., Wells, C.: Category Theory for Computing Science. Prentice-Hall international series in computer science. Prentice Hall (1995)Google Scholar
  3. 3.
    Chen, P.P.S.: The entity-relationship model – toward a unified view of data. ACM Trans. Database Syst. 1(1), 9–36 (1976)CrossRefGoogle Scholar
  4. 4.
    Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge mathematical text books. Cambridge University Press (2002)Google Scholar
  5. 5.
    Diskin, Z.: Formalizing graphical schemas for conceptual modeling: Sketch-based logic vs. heuristic pictures. In: 10th International Congress of Logic, Methodology and Philosophy of Science, pp. 40–41 (1995)Google Scholar
  6. 6.
    Diskin, Z.: Generalised sketches as an algebraic graph-based framework for semantic modeling and database design. LDBD research report, Frame Inform Systems (May 1997)Google Scholar
  7. 7.
    Diskin, Z., Kadish, B.: Algebraic graph-oriented = category theory based – manifesto of categorizing database theory. LDBD research report, Frame Inform Systems (December 1994)Google Scholar
  8. 8.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland Mathematical Library. Elsevier Science (1990)Google Scholar
  9. 9.
    Furusawa, H.: Algebraic Formalisations of Fuzzy Relations and Their Representation Theorems. Ph.D. thesis, Kyushu University (1998)Google Scholar
  10. 10.
    Halpin, T.: Object-role modeling (ORM/NIAM). In: Handbook on Architectures of Information Systems, pp. 81–102. Springer (1998)Google Scholar
  11. 11.
    Hull, R., King, R.: Semantic database modeling: survey, applications, and research issues. ACM Comput. Surv. 19(3), 201–260 (1987)CrossRefGoogle Scholar
  12. 12.
    Johnson, M., Kasangian, S.: A relational model of incomplete data without nulls. In: Proceedings of the Sixteenth Symposium on Computing: the Australasian Theory, CATS 2010, vol. 109, pp. 89–94. Australian Computer Society, Inc., Darlinghurst (2010)Google Scholar
  13. 13.
    Johnson, M., Rosebrugh, R.: Sketch data models, relational schema and data specifications. Electronic Notes in Theoretical Computer Science 61, 51–63 (2002); Computing: the Australasian Theory Symposium, CATS 2002Google Scholar
  14. 14.
    Johnson, M., Rosebrugh, R.: Fibrations and universal view updatability. Theor. Comput. Sci. 388(1-3), 109–129 (2007)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Johnson, M., Rosebrugh, R., Wood, R.J.: Entity-relationship models and sketches (1996) (preprint)Google Scholar
  16. 16.
    Johnson, M., Rosebrugh, R., Wood, R.J.: Lenses, fibrations and universal translations. Mathematical. Structures in Comp. Sci. 22(1), 25–42 (2012)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Lippe, E., ter Hofstede, A.H.M.: A category theory approach to conceptual data modeling. Informatique Theorique et Applications 30(1), 31–79 (1996)MATHMathSciNetGoogle Scholar
  18. 18.
    Rosebrugh, R., Wood, R.J.: Relational databases and indexed categories. In: Proceedings of the International Category Theory Meeting 1991. CMS Conference Proceedings, vol. 13, pp. 391–407. American Mathematical Society (1992)Google Scholar
  19. 19.
    Spivak, D.I.: Simplicial databases. CoRR abs/0904.2012 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bartosz Zieliński
    • 1
  • Paweł Maślanka
    • 1
  • Ścibor Sobieski
    • 1
  1. 1.Department of Theoretical Physics and Computer Science, Faculty of Physics and Applied InformaticsUniversity of ŁodźŁódźPoland

Personalised recommendations