Transforming Formal Specification Constructs into Diagrammatic Notations

  • Kobamelo Moremedi
  • John Andrew van der Poll
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8216)

Abstract

Specification plays a vital role in software engineering to facilitate the development of highly dependable software. Various techniques may be used for specification work. Z is a formal specification language that is based on a strongly-typed fragment of Zermelo-Fraenkel set theory and first-order logic to provide for precise and unambiguous specifications. While diagrammatic specification languages may lack precision, they may, owing to their visual characteristics be a lucrative option for advocates of semi-formal specification techniques. In this paper we investigate to what extent formal constructs, e.g. Z may be transformed into diagrammatic notations. Several diagrammatic notations are considered and combined for this purpose.

Keywords

Diagrammatic notation Formal specification Euler diagrams Spider diagrams Venn-Pierce diagrams 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alagar, V.S., Periyasamy, K.: Specification of Software Systems, pp. 3–14. Springer, New York (1998)CrossRefMATHGoogle Scholar
  2. 2.
    Bowen, J.: Formal Specification and Documentation using Z – A Case Study Approach, pp. 3–11 (2003); C.A.R. Hoare Series EditorGoogle Scholar
  3. 3.
    Chow, S., Ruskey, F.: Drawing Area-Proportional Venn and Euler Diagrams. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 466–477. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Dau, F.: Types and Tokens for Logic with Diagrams. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 62–93. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Delaney, A., Stapleton, G.: On the Descriptional Complexity of a Diagrammatic Notation. In: Proceedings of the 13th International Conference on Distributed Multimedia Systems, September 6-8 (2007)Google Scholar
  6. 6.
    Diller, A.: Z: An Introduction to Formal Methods, 2nd edn. Wiley, Chichester (1994)MATHGoogle Scholar
  7. 7.
    Gil, J., Howse, J.: Formalizing Spider Diagrams. In: IEEE Symposium on Visual Languages, pp. 130–137 (1999)Google Scholar
  8. 8.
    Hayes, I.: Specification Case Studies. Prentice Hall International, UK (1992)Google Scholar
  9. 9.
    Howse, J., Molina, F., Taylor, J.: Reasoning with Spider Diagrams. In: IEEE Symposium on Visual Languages, September 13-16, pp. 138–145 (1999)Google Scholar
  10. 10.
    Howse, J., Taylor, J., Stapleton, G., Simpson, T.: The Expressiveness of Spider Diagrams Augmented with Constants. Journal of Visual Languages and Computing 20, 30–49 (2009)CrossRefGoogle Scholar
  11. 11.
    Howse, J., Taylor, J., Stapleton, G., Simpson, T.: What Can Spider Diagrams Say? In: Blackwell, A.F., Marriott, K., Shimojima, A. (eds.) Diagrams 2004. LNCS (LNAI), vol. 2980, pp. 112–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Howse, J., Taylor, J., Stapleton, G.: Spider Diagrams. LMS Journal of Computation and Mathematics 2980, 154–194 (2005)MathSciNetGoogle Scholar
  13. 13.
    Molina, F.: Reasoning with Extended Venn-Pierce Diagrammatic Systems. PhD Thesis, University of Brighton (2001)Google Scholar
  14. 14.
    Potter, B., Sinclair, J., Till, D.: An Introduction to Formal Specification and Z, 2nd edn. Prentice Hall, Upper Saddle River (1996)MATHGoogle Scholar
  15. 15.
    Stapleton, G., Rodgers, P., Howse, J., Taylor, J.: Properties of Euler diagrams. Layout of (Software) Engineering Diagrams 7, 1–15 (2007)Google Scholar
  16. 16.
    Stapleton, G.: A Survey of Reasoning Systems Based on Euler Diagrams. In: Proceedings of the First International Workshop on Euler Diagrams, Brighton, UK, June 1, vol. 134, pp. 127–151 (2005)Google Scholar
  17. 17.
    Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall (1992)Google Scholar
  18. 18.
    Kim, S.-K., Carrington, D.A.: A Formal Mapping between UML Models and Object-Z Specifications. In: ZB Conference, pp. 2–21 (2000)Google Scholar
  19. 19.
    Van der Poll, J.A.: Formal Methods in Software Development: A Road Less Travelled. South African Computer Journal (SACJ) (45), 40–52 (2010)Google Scholar
  20. 20.
    Wordsworth, J.B.: Software Development with Z. Addison-Wesley, IBM United Kingdom (1992)Google Scholar
  21. 21.
    Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice-Hall (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kobamelo Moremedi
    • 1
  • John Andrew van der Poll
    • 2
  1. 1.School of ComputingUniversity of South AfricaPretoriaSouth Africa
  2. 2.Graduate School of Business LeadershipUniversity of South AfricaMidrandSouth Africa

Personalised recommendations