Skip to main content

Biomimetic Coatings by Pulsed Laser Deposition

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The study of high-intensity laser radiation interacting with solid materials started at the beginning of laser era, i.e. more than 50 years ago. This interaction was initially described as vaporization, sputtering, desorption, etching or laser ablation. Ablation was used for the first time in connection with lasers for introducing material expulsion by visible-infrared (VIS-IR) sources. The advent of the short pulsed sources in visible and especially ultra-violet has made possible laser ablation deposition, an extremely versatile processing technique. When a high intensity laser pulse hits a solid material, the photons absorption can initiate the melting and local vaporization of the outer layer. A cloud of substance described as plasma plume, consisting of photons, electrons, ions, atoms, molecules, clusters, liquid and/or solid particles, is generated. Next, the plume expands from target surface with high velocity and can either be used to grow a film on a nearby substrate or to analyze its composition by using various spectroscopic techniques. In materials science, pulsed laser action opened a door towards various applications, such as localized melting, laser annealing, surface cleaning by desorption and ablation, and surface hardening by rapid quench. After 1988 pulsed laser deposition (PLD) technologies were applied for synthesizing high quality nanostructured thin films. This chapter reviews important applications of PLD and recent work in the field of biomimetic coatings. Furthermore, technical limitations and possible solutions are outlined. The general characteristics of PLD relevant to solid-state physics, e.g. the initial ablation processes, plume formation and plume characteristics are discussed as well.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Maiman TH (1960) The first experimental LASER: stimulated optical emission in ruby. Nature 187:493–494

    Article  ADS  Google Scholar 

  2. Bednorz JG, Muller KA (1986) Possible high T\(_{c}\) superconductivity in the Ba-La-Cu-O system. Z. Physik B 64 (1): 189–193

    Google Scholar 

  3. Wu MK, Ashnuru JR, Torng CJ, Hor PH, Meng RL, Gao L, Huang ZJ, Wang YQ, Chu CW (1987) Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys Rev Lett 58:908–910

    Article  ADS  Google Scholar 

  4. Hecht J (2012) Ultrafast lasers make ultraprecise tools. Laser Focus World 48(3):39–42

    Google Scholar 

  5. Gaković B, Radak B, Radu C, Zamfirescu M, Trtica M, Petrović S, Stašić J, Panjan P, Mihailescu IN (2012) Selective single pulse femtosecond laser removal of alumina (Al\(_{2}\)O\(_{3})\) from a bilayered Al\(_{2}\)O\(_{3}\)/TiAlN/steel coating. Surf Coat Technol 206(24):5080–5084

    Article  Google Scholar 

  6. Gakovic B, Radu C, Zamfirescu M, Radak B, Trtica M, Petrovic S, Panjan P, Zupanic F, Ristoscu C, Mihailescu IN (2011) Femtosecond laser modification of multilayered TiAlN/TiN coating. Surf Coat Technol 206(2–3):411–416

    Article  Google Scholar 

  7. Ristoscu C, Ghica C, Papadopoulou EL, Socol G, Gray D, Mironov B, Mihailescu IN, Fotakis C (2011) Modification of AlN thin films morphology and structure by temporally shaping of fs laser pulses used for deposition. Thin Solid Film 519:6381–6387

    Article  ADS  Google Scholar 

  8. Kononenko TV, Nagovitsyn IA, Chudinova GK, Mihailescu IN (2011) Clean, cold, and liquid-free laser transfer of biomaterials. Laser Phys 21(4):823–829

    Article  ADS  Google Scholar 

  9. Ulmeanu M, Jipa F, Radu C, Enculescu M, Zamfirescu M (2012) Large scale microstructuring on silicon surface in air and liquid by femtosecond laser pulses. Appl Surf Sci 258(23):9314–9317

    Article  ADS  Google Scholar 

  10. Bogue R (2010) Fifty years of the laser: its role in material processing. Assem Automat 30(4):317–322

    Article  Google Scholar 

  11. Chrisey DB, Hubler GK (eds) (1994) Pulsed laser deposition of thin film. Wiley, New York

    Google Scholar 

  12. Mihailescu IN, Gyorgy E (1999) Pulsed laser deposition: an overview. In: Asakura T (ed) International trends in optics and photonics ICO IV. Springer, Berlin

    Google Scholar 

  13. Chrisey DB, Hubler GK (eds) (1994) Pulsed laser deposition of thin film (Chaps. 14–25). Wiley, New York

    Google Scholar 

  14. Eason R (ed) (2007) Pulsed laser deposition of thin films-applications-led growth of functional materials. Wiley, USA

    Google Scholar 

  15. Rijnders G, Blank DHA (2007) Growth kinetics during Pulsed laser deposition. In: Eason R (ed) Pulsed laser deposition of thin films-applications-led growth of functional materials. Wiley, USA

    Google Scholar 

  16. Ristoscu C, Cultrera L, Dima A, Perrone A, Cutting R, Du HL, Busiakiewicz A, Klusek Z, Datta S, Rose S (2005) SnO\(_{2}\) nanostructured films obtained by pulsed laser ablation deposition. Appl Surf Sci 247(1–4):95–100

    Article  ADS  Google Scholar 

  17. Ortega N, Bhattacharya P, Katiyar RS (2006) Enhanced ferroelectric properties of multilayer \( \rm {SrBi_{2}Ta_{2}O_{9}/SrBi_{2}Nb_{2}O_{9}}\) thin films for NVRAM applications. Mat Sci Eng B 1–3:36–40

    Article  Google Scholar 

  18. Dorcioman G, Ebrasu D, Enculescu I, Serban N, Axente E, Sima F, Ristoscu C, Mihailescu IN (2010) Metal oxide nanoparticles synthesized by pulsed laser ablation for proton exchange membrane fuel cells. J Power Source 195(23):7776–7780

    Article  Google Scholar 

  19. Mihailescu IN, Gyorgy E, Teodorescu VS, Neamtu J, Perrone A, Luches A (1999) Characteristic features of the laser radiation-target interactions during reactive pulsed laser ablation of Si targets in ammonia. J Appl Phys 86(12):7123–7128

    Article  ADS  Google Scholar 

  20. Yoshitake T, Nagayama K (2004) The velocity distribution of droplets ejected from Fe and Si targets by pulsed laser ablation in a vacuum and their elimination using a vane-type velocity filter. Vacuum 74(3–4):515–520

    Article  Google Scholar 

  21. Yoshitake T, Shiraishi G, Nagayama K (2002) Elimination of droplets using a vane velocity filter for pulsed laser ablation of FeSi2. Appl Surf Sci 197–198:379–383

    Article  Google Scholar 

  22. György E, Mihailescu IN, Kompitsas M, Giannoudakos A (2004) Deposition of particulate-free thin films by two synchronized laser sources: effects of ambient gas pressure and laser fluence. Thin Solid Film 446(2):178–183

    Article  ADS  Google Scholar 

  23. Greer J (2007) Large-area commercial pulsed laser deposition. In: Eason R (ed) Pulsed laser deposition of thin films-applications-led growth of functional materials. Wiley, USA

    Google Scholar 

  24. Develos-Bagarinao K, Yamasaki H, Nakagawa Y, Endo K (2004) Relationship between composition and surface morphology in YBCO films deposited by large-area PLD. Physica C Superconductivity 412–414:1286–1290

    Article  Google Scholar 

  25. Sudakar C, Subbanna GN, Kutty TRN (2003) Hexaferrite-FeCo nanocomposite particles and their electrical and magnetic properties at high frequencies. J Appl Phys 94:6030–6033

    Article  ADS  Google Scholar 

  26. Zakery A, Ruan Y, Rode AV, Samoc M, Luther-Davies B (2003) Low-loss waveguides in ultrafast laser-deposited As\(_{2}\)S\(_{3}\) chalcogenide films. J Opt Soc Am B 20:1844–1852

    Article  ADS  Google Scholar 

  27. Stanoi D, Popescu A, Ghica C, Socol G, Axente E, Ristoscu C, Mihailescu IN, Stefan A, Georgescu S (2007) Nanocrystalline Er:YAG thin films prepared by pulsed laser deposition: an electron microscopy study. Appl Surf Sci 253:8268–8272

    Article  ADS  Google Scholar 

  28. Ohtomo A, Kawasaki M, Sakurai Y, Ohkubo I, Shiroki R, Yoshida Y, Yasuda T, Segawa Y, Koinuma H (1998) Fabrication of alloys and superlattices based on ZnO towards ultraviolet laser. Mater Sci Eng B 56:263–266

    Article  Google Scholar 

  29. Ohta H, Orita M, Hirano M, Nakahara K, Maruta H, Tanabe T, Kamiya M, Kamiya T, Hosono H (2003) Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO. Appl Phys Lett 83:1029–1031

    Article  ADS  Google Scholar 

  30. Starke TKH, Coles GSV, Ferkel H (2002) High sensitivity NO\(_{2}\) sensors for environmental monitoring produced using laser ablated nanocrystalline metal oxides. Sens Actuat B 85: 239–245

    Google Scholar 

  31. Gyorgy E, Socol G, Axente E, Mihailescu IN, Ducu C, Ciuca S (2005) Anatase phase TiO\(_{2 }\)thin films obtained by pulsed laser deposition for gas sensing applications. Appl Surf Sci 247:429–433

    Article  ADS  Google Scholar 

  32. György E, Socol G, Mihailescu IN, Ducu C, Ciuca S (2005) Structural and optical characterization of WO\(_{3}\) thin films for gas sensor applications. J Appl Phys 97:093527

    Article  ADS  Google Scholar 

  33. Mazingue Th, Escoubas L, Spalluto L, Flory F, Socol G, Ristoscu C, Axente E, Grigorescu S, Mihailescu IN, Vainos NA (2005) Nanostructured ZnO coatings grown by pulsed laser deposition for optical gas sensing of butane. J Appl Phys 98:074312

    Article  ADS  Google Scholar 

  34. Mazingue Th, Escoubas L, Spalluto L, Flory F, Jacquouton P, Perrone A, Kaminska E, Piotrowska A, Mihailescu IN, Atanasov P (2006) Optical characterizations of ZnO, SnO\(_{2}\), and TiO\(_{2}\) thin films for butane detection. Appl Optic 45:1425–1435

    Article  ADS  Google Scholar 

  35. Ristoscu C, Mihailescu IN, Caiteanu D, Mihailescu CN, Mazingue Th, Escoubas L, Perrone A, Du H (2008) Nanostructured thin optical sensors for detection of gas traces. In: Vaseashta A, Mihailescu IN (eds) Functionalized nanoscale materials, devices, and systems. In: Proceedings of NATO advanced study institute. Functionalized nanoscale materials, devices, and systems for chem.-bio sensors, photonics, and energy generation and storage, June 4–15, 2007, Sinaia, Romania. Springer Science + Business Media B.V, pp. 27–50

    Google Scholar 

  36. Mosaner P, Bonelli M, Miotello A (2003) Pulsed laser deposition of diamond-like carbon films: reducing internal stress by thermal annealing. Appl Surf Sci 208–209:561–565

    Article  Google Scholar 

  37. Marotta V, Orlando S, Parisi GP, Santagata A (2003) Boron nitride thin films deposited by RF plasma reactive pulsed laser ablation. Appl Surf Sci 208–209:575–581

    Article  Google Scholar 

  38. Pelletier H, Carradò A, Faerber J, Mihailescu IN (2011) Microstructure and mechanical characteristics of hydroxyapatite coatings on Ti/TiN/Si substrates synthesized by pulsed laser deposition. Appl Phys A 102(3):629–640

    Article  ADS  Google Scholar 

  39. Craciun D, Socol G, Stefan N, Mihailescu IN, Bourne G, Craciun V (2009) High-repetition rate pulsed laser deposition of ZrC thin films. Surf Coat Tehnol 203(8):1055–1058

    Article  Google Scholar 

  40. http://www.merriam-webster.com/medical/biocompatibility

  41. Cotell CM (1994) Pulsed laser deposition of biocompatible thin films. In: Chrisey DB, Hubler GK (eds) Pulsed laser deposition of thin film. Wiley, New York

    Google Scholar 

  42. Fernández-Pradas JM, Sardin G, Clèries L, Serra P, Ferrater C, Morenza JL (1998) Deposition of hydroxyapatite thin films by excimer laser ablation. Thin Solid Film 317:393–396

    Article  ADS  Google Scholar 

  43. Nelea V, Ristoscu C, Chiritescu C, Ghica C, Mihailescu IN, Pelletier H, Mille P, Cornet A (2000) Pulsed laser deposition of hydroxyapatite thin films on Ti-5Al-2.5Fe substrates with and without buffer layers. Appl Surf Sci 168(1–4):127–131

    Article  ADS  Google Scholar 

  44. Nelea V, Pelletier H, Iliescu M, Verckmann J, Craciun V, Mihailescu IN, Ristoscu C, Ghica C (2002) Calcium phosphate thin film processing by pulsed laser deposition and in situ assisted ultraviolet pulsed laser deposition. J Mater Sci Mater Med 13:1167–1173

    Article  Google Scholar 

  45. Bigi A, Bracci B, Cuisinier F, Elkaim R, Fini M, Mayer I, Mihailescu IN, Socol G, Sturba L, Torricelli P (2005) Human osteoblast response to pulsed laser deposited calcium phosphate coatings. Biomaterials 26:2381–2385

    Article  Google Scholar 

  46. Nelea V, Mihailescu IN, Jelinek M (2007) Biomaterials: new issues and breakthroughs for biomedical applications. In: Eason R (ed) Pulsed laser deposition of thin films-applications-led growth of functional materials. Wiley, USA

    Google Scholar 

  47. Renghini C, Girardin E, Fomin AS, Manescu A, Sabbioni A, Barinov SM, Komlev VS, Albertini G, Fiori F (2008) Plasma sprayed hydroxyapatite coatings from nanostructured granules. Mater Sci Eng B 152:86–90

    Article  Google Scholar 

  48. Massaro C, Baker MA, Consentino F, Ramires PA, Klose S, Milella E (2001) Surface and biological evaluation of hydroxyapatite-based coatings on titanium deposited by different techniques. J Biomed Mater Res 58:651–657

    Article  Google Scholar 

  49. Sumarev RA (2012) A review of plasma-assisted methods for calcium phosphate-based coatings fabrication. Surf Coat Technol 206:2035–2056

    Google Scholar 

  50. Ye G, Troczynski T (2008) Hydroxyapatite coatings by pulsed ultrasonic spray pyrolysis. Ceram Int 34:511–516

    Article  Google Scholar 

  51. Socol G, Macovei AM, Miroiu F, Stefan N, Duta L, Dorcioman G, Mihailescu IN, Petrescu SM, Stan GE, Marcov DA, Chiriac A, Poeata I (2010) Hydroxyapatite thin films synthesized by pulsed laser deposition and magnetron sputtering on PMMA substrates for medical applications. Mater Sci Eng B 169:159–168

    Article  Google Scholar 

  52. León B, Jansen J (eds) (2009) Thin calcium phosphate coatings for medical implants. Springer Science + Business Media, New York

    Google Scholar 

  53. Miroiu FM, Socol G, Visan A, Stefan N, Craciun D, Craciun V, Dorcioman G, Mihailescu IN, Sima LE, Petrescu SM, Andronie A, Stamatin I, Moga S, Ducu C (2010) Composite biocompatible hydroxyapatite-silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater Sci Eng B 169:151–158

    Article  Google Scholar 

  54. Elliott JC (1994) Structure and chemistry of the apatites and other calcium orthophosphates. Elsevier, Amsterdam

    Google Scholar 

  55. Armulik A, Svinberg G, Wennerberg K, Fässler R, Johansson S (2000) Expression of integrin subunit \(\beta \)1B in Integrin \(\beta \)1-deficient GD25 cells does not interfere with \(\alpha \)V\(\beta \)3 Functions. Exp Cell Res 254:53–55

    Article  Google Scholar 

  56. Fu L, Khor KA, Lim JP (2000) Yttria stabilized zirconia reinforced hydroxyapatite coatings. Surf Coat Technol 127:66–75

    Article  Google Scholar 

  57. Ammann P (2005) Strontium ranelate: a novel mode of action leading to renewed bone quality. Osteoporos Int 16(1):S11–15

    Article  Google Scholar 

  58. Marie PJ (2007) Strontium ranelate: new insights into its dual mode of action. Bone 40(5):S5–S8

    Article  Google Scholar 

  59. Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18(6):517–523

    Article  Google Scholar 

  60. Chang W, Tu C, Chen T, Komuwes L, Oda Y, Pratt S, Miller S, Shoback D (1999) Expression and signal transduction of calcium-sensing receptors in cartilage and bone. Endocrinology 140(12):5883–5893

    Article  Google Scholar 

  61. Ammann P, Shen V, Robin B, Mauras Y, Bonjour JP, Rizzoli R (2004) Strontium ranelate improves bone resistance by increasing bone mass and improving architecture in intact female rats. J Bone Miner Res 19(12):2012–2020

    Article  Google Scholar 

  62. Grynpas MD, Hamilton E, Cheung R, Tsouderos Y, Deloffre P, Hott M, Marie PJ (1996) Strontium increases vertebral bone volume in rats at a low dose that does not induce detectable mineralization defect. Bone 18(3):253–259

    Article  Google Scholar 

  63. Marie PJ, Hott M, Modrowski D, De Pollak C, Guillemain J, Deloffre P, Tsouderos Y (1993) An uncoupling agent containing strontium prevents bone loss by depressing bone resorption and maintaining bone formation in estrogen-deficient rats. J Bone Miner Res 8:607–615

    Article  Google Scholar 

  64. Zhang J, Nancollas GH (1992) Kinetics and mechanisms of octacalcium phosphate dissolution at 37\(^{\circ }\)C. J Phys Chem 96:5478–5483

    Google Scholar 

  65. Mathew M, Brown WE, Schroeder LW, Dickens B (1988) Crystal structure of octacalcium bis(hydrogenphosphate) tetrakis(phosphate)pentahydrate, \(\rm {Ca_{8}(HPO_{4})_{2}(PO_{4})_{4}.5H_{2}O}\). J Crystallograph Spectros Res 18(3):235–250

    Article  Google Scholar 

  66. Bigi A, Boanini E, Bracci B, Falini G, Rubini K (2003) Interaction of acidic poly-amino acids with octacalcium phosphate. J Inorg Biochem 95:291–296

    Article  Google Scholar 

  67. González P, Serra J, Liste S, Chiussi S, León B, Pérez-Amor M (2002) Ageing of pulsed-laser-deposited bioactive glass films. Vacuum 67:647–651

    Article  Google Scholar 

  68. Haglund R (2012) Fundamentals I: types of lasers and laser optics. In: Invited lecture at 3rd international school on lasers in materials science, Isola di San Servolo, Venice, Italy, July 8–15, 2012

    Google Scholar 

  69. http://www.coherent.com

  70. Green SM, Pique A, Harshavardhan KS, Bernstein J (1994) Equipment. In: Chrisey DB, Hubler GK (eds) Pulsed laser deposition of thin film. Wiley, New York

    Google Scholar 

  71. Prokhorov AM, Konov VI, Ursu I, Mihailescu IN (1990) Laser heating of metals. IOP Publishing Ltd, New York

    Google Scholar 

  72. León B (2009) Pulsed laser deposition of thin film calcium phosphate coatings. In: León B, Jansen J (eds) Thin calcium phosphate coatings for medical implants. Springer Science+Business Media, New York

    Google Scholar 

  73. Mihailescu IN, Ristoscu C, Bigi A, Mayer I (2010) Advanced biomimetic implants based on nanostructured coatings synthesized by pulsed laser technologies. In: Miotello, Antonio; Ossi, Paolo M (eds) Laser-surface interactions for new materials production tailoring structure and properties. In: Springer Series in Materials Science, vol 130, pp. 235–260

    Google Scholar 

  74. Perrière J, Millon E, Fogarassy E (eds) (2006) Recent advances in laser processing of materials. Elsevier, Amsterdam

    Google Scholar 

  75. Kamata M, Imahoko T, Ozono K, Obara M (2004) Materials processing by use of a Ti:Sapphire laser with automatically-adjustable pulse duration. Appl Phys A 79:1679–1685

    Google Scholar 

  76. CRC Handbook of chemistry and physics (2008) CRC Press, Taylor and Francis Group LLC

    Google Scholar 

  77. Craciun D, Socol G, Stefan N, Miroiu M, Mihailescu IN, Galca AC, Craciun V (2009) Structural investigations of ITO-ZnO films grown by the combinatorial pulsed laser deposition technique. Appl Surf Sci 255(10):5288–5291

    Article  ADS  Google Scholar 

  78. Socol G, Galca AC, Luculescu CR, Stanculescu A, Socol M, Stefan N, Axente E, Duta L, Mihailescu CN, Craciun V, Craciun D, Sava V, Mihailescu IN (2011) Tailoring of optical, compositional and electrical properties of the In\(_{x}\)Zn\(_{1-x}\)O thin films obtained by combinatorial Pulsed Laser Deposition. Dig J Nanomater Biostruct 6(1):107–115

    Google Scholar 

  79. Bauerle D (2011) Laser processing and chemistry, 4th edn (Chap. 1). Spinger, Berlin

    Google Scholar 

  80. Chan CL, Mazunder J (1987) One-dimensional steady-state model for damage by vaporization and liquid expulsion due to laser-material interaction. J Appl Phys 62:4579–4586

    Article  ADS  Google Scholar 

  81. Inam A, Rogers CT, Ramesh R, Remschnig K, Farrow L, Hart D, Venkatesan T, Wilkens B (1990) a-axis oriented epitaxial YBa\(_{2}\)Cu\(_{3}\)O\(_{7-x}\)-PrBa\(_{2}\)Cu\(_{3}\)O\(_{7-y}\) heterostructures. Appl Phys Lett 57:2484–2486

    Article  ADS  Google Scholar 

  82. Wood RF, Giles GE (1981) Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting. Phys Rev B 23:2923–2942

    Article  ADS  Google Scholar 

  83. Singh RK, Narayan J (1989) A novel method for simulating laser-solid interactions in semiconductors and layered structures. Mater Sci Eng B 3:217–230

    Article  Google Scholar 

  84. Singh RK, Holland OW, Narayan J (1990) Theoretical model for deposition of superconducting thin films using pulsed laser evaporation technique. J Appl Phys 68:233–247

    Article  ADS  Google Scholar 

  85. Mihailescu IN, Hermann J (2010) Laser plasma interactions. In: Schaaf P (ed) Laser processing of materials: fundamentals. Applications and developments. In: Springer Series in Materials Science, Springer, Heidelberg

    Google Scholar 

  86. van Ingen RP, Fastenau RHJ, Mittemeijer EJ (1994) Laser ablation deposition of Cu-Ni and Ag-Ni films: Nonconservation of alloy composition and film microstructure. J Appl Phys 76:1871–1883

    Article  ADS  Google Scholar 

  87. Anisimov SI, Bauerle D, Luk’yanchuk BS (1993) Gas dynamics and film profiles in pulsed-laser deposition of materials. Phys Rev B 48(16):12076–12081

    Article  ADS  Google Scholar 

  88. Singh RK, Narayan J (1990) Pulsed-laser evaporation technique for deposition of thin films: physics and theoretical model. Phys Rev B 41:8843–8859

    Article  ADS  Google Scholar 

  89. Kaganov MI, Lifshitz IM, Tanatarov LV (1957) Relaxation between electrons and crystalline lattices. Sov Phys JETP 4:173–178

    MATH  Google Scholar 

  90. Anisimov SI, Kapeliovich BL, Perel’man TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Sov Phys JETP 39:375–377

    ADS  Google Scholar 

  91. Wellershoff SS, Hohlfeld J, Glidde J, Matthias E (1999) The role of electron-phonon coupling in femtosecond laser damage of metals. Appl Phys A 69:S99–S107

    ADS  Google Scholar 

  92. Knight CJ (1979) Theoretical modeling of rapid surface vaporization with back pressure. AIAA J 17(5):519–523

    Article  ADS  Google Scholar 

  93. Anisimov SI, Imas YA, Romanov GS (1971) Effects of high-power radiation on metals. NTIS Springfield, VA

    Google Scholar 

  94. Axente E, Mihailescu IN, Hermann J, Itina TE (2011) Probing electron-phonon coupling in metals via observations of ablation plumes produced by two delayed short laser pulses. Appl Phys Lett 99:081502

    Article  ADS  Google Scholar 

  95. Serra P, Cleries L, Morenza JL (1996) Analysis of the expansion of hydroxyapatite laser ablation plumes. Appl Surf Sci 96–98:216–221

    Article  Google Scholar 

  96. Serra P, Fernandez-Pradas JM, Sardin G, Morenza JL (1997) Interaction effects of an excimer laser beam with hydroxyapatite targets. Appl Surf Sci 109–110:384–388

    Article  Google Scholar 

  97. Serra P, Morenza JL (1998) Imaging and spectral analysis of hydroxyapatite laser ablation plumes. Appl Surf Sci 127–129:662–667

    Article  Google Scholar 

  98. Serra P, Morenza JL (1998) Fluence dependence of hydroxyapatite laser ablation plumes. Thin Solid Films 335:43–48

    Article  ADS  Google Scholar 

  99. Miroiu F, Mihailescu IN, Hermann J, Sentis M (2004) Spectroscopic analyses during femtosecond laser ablation of hydroxyapatite. In: SPIE Proceedings of the 7th international conference on optics ROMOPTO, vol 5581, pp. 479–485, September 8–11, 2003, Constanta, Romania

    Google Scholar 

  100. Hermann J, Dutouquet C (2002) Local thermal equilibrium plasma modeling for analyses of gas-phase reactions during reactive-laser ablation. J Appl Phys 91(12):10188–10193

    Article  ADS  Google Scholar 

  101. Jedynski M, Hoffman J, Mroz W, Szymanski Z (2008) Plasma plume induced during ArF laser ablation of hydroxyapatite. Appl Surf Sci 255:2230–2236

    Article  ADS  Google Scholar 

  102. Myerson A (2002) Handbook of industrial crystallization, 2nd edn. Butterworth-Heinemann, USA

    Google Scholar 

  103. Horwitz JS, Sprague JA (1994) Film nucleation and film growth in pulsed laser deposition of ceramics. In: Chrisey DB, Hubler GK (eds) Pulsed laser deposition of thin film. Wiley, New York

    Google Scholar 

  104. Amoruso S, Aruta C, Bruzzese R, Wang X (2011) Substrate heating influence on the deposition rate of oxides during pulsed laser deposition in ambient gas. Appl Phys Lett 98:101501

    Article  ADS  Google Scholar 

  105. Ratner BD, Hench L (1999) Perspectives on biomaterials. Curr Opin Solid State Mater Sci 4(4):379–380

    Article  ADS  Google Scholar 

  106. Mihailescu IN, Lamolle S, Socol G, Miroiu F, Roenold HJ, Bigi A, Mayer I, Cuisinier F, Lyngstadaas SP (2008) In vivo tensile tests of biomimetic titanium implants pulsed laser coated with nanostructured calcium phosphate thin films. Optoelectron Adv Mater Rapid Commun 2(6):337–341

    Google Scholar 

  107. Socol G, Torricelli P, Bracci B, Iliescu M, Miroiu F, Bigi A, Werckmann J, Mihailescu IN (2004) Biocompatible nanocrystalline octacalcium phosphate thin films obtained by pulsed laser deposition. Biomaterials 25(13):2539–2545

    Article  Google Scholar 

  108. Tanaskovic D, Jokic B, Socol G, Popescu A, Mihailescu I, Petrovic R (2007) Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition. Appl Surf Sci 254(4):1279–1282

    Article  ADS  Google Scholar 

  109. Sima F, Ristoscu C, Caiteanu D, Stefan N, Mihailescu CN, Mihailescu IN, Prodan G, Ciupina V, Palcevskis E, Krastins J, Sima LE, Petrescu SM (2011) Biocompatibility and bioactivity enhancement of Ce stabilized ZrO\(_{2}\) doped HA coatings by controlled porosity change of Al\(_{2}\)O\(_{3}\) substrates. J Biomed Mater Res B 96(2):218–224

    Google Scholar 

  110. Sima F, Ristoscu C, Stefan N, Dorcioman G, Mihailescu IN, Sima LE, Petrescu SM, Palcevskis E, Krastins J, Zalite I (2009) Shallow hydroxyapatite coatings pulsed laser deposited on Al\(_{2}\)O\(_{3}\) substrates with controlled porosity: correlation of morphological characteristics with in vitro testing results. Appl Surf Sci 255:5312–5317

    Google Scholar 

  111. Gauthier O, Bouler JM, Aguado E, Pilet P, Daculsi G (1998) Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials 19:133–139

    Article  Google Scholar 

  112. Jelínek M, Kocourek T, Jurek K, Remsa J, Mikšovský J, Weiserová M, Strnad J, Luxbacher T (2010) Antibacterial properties of Ag-doped hydroxyapatite layers prepared by PLD method. Appl Phys A 101:615–620

    Article  ADS  Google Scholar 

  113. Jelínek M, Weiserová M, Kocourek T, Zezulová M, Strnad J (2011) Biomedical properties of laser prepared silver doped hydroxyapatite. Laser Phys 21(7):1265–1269

    Article  ADS  Google Scholar 

  114. Socol G, Socol M, Sima LE, Petrescu S, Enculescu M, Sima F, Miroiu M, Popescu-Pelin G, Stefan N, Cristescu R, Mihailescu CN, Stanculescu A, Sutan C, Mihailescu IN (2012) Combinatorial pulsed laser deposition of Ag-containing calcium phosphate coatings. Dig J Nanomater Biostruct 7(2):563–576

    Google Scholar 

  115. Capuccini C, Torricelli P, Sima F, Boanini E, Ristoscu C, Bracci B, Socol G, Fini M, Mihailescu IN, Bigi A (2008) Strontium-substituted hydroxyapatite coatings synthesized by pulsed laser deposition: in vitro osteoblast and osteoclast response. Acta Biomaterialia 4:1885–1893

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the financial support of UEFISCDI under the contract ID304/2011 and of the European Social Fund through the contract POSDRU/89/1.5/S/60746.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion N. Mihailescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ristoscu, C., Mihailescu, I.N. (2013). Biomimetic Coatings by Pulsed Laser Deposition. In: Schmidt, V., Belegratis, M. (eds) Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41341-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41341-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41340-7

  • Online ISBN: 978-3-642-41341-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics