Skip to main content

Direct Laser Writing

  • Chapter
  • First Online:
Book cover Laser Technology in Biomimetics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Direct laser writing has emerged in recent years as a powerful technology for the realization of micron to sub-micrometer resolution structures in the field of biomedicine. The technology is based on the nonlinear optical effect of two-, or multi-photon absorption, inducing photochemical effects in a defined volume. These photochemical effects can be utilized for the fabrication of microstructures, as well as for a defined 3D chemical surrounding. In this contribution, the basic principles of direct laser writing are described, followed by an explanation of process relevant aspects and a short survey of available techniques and technologies for enhanced performance. In the last part of this chapter, some examples of direct laser writing in the field of 3D cell culture and tissue engineering are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott EA (2010) Flatland: a romance of many dimensions. Merchant Books, New York

    Google Scholar 

  2. Deubel M, von Freymann G, Wegener M, Pereira S, Busch K, Soukoulis CM (2004) Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat Mater 3:444–447

    ADS  Google Scholar 

  3. LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA (2007) Multi-photon fabrication. Angewandte Chemie-International Edition 46:6238–6258

    Google Scholar 

  4. Lee KS, Kim RH, Yang DY, Park SH (2008) Advances in 3D nano/microfabrication using two-photon initiated polymerization. Prog Polym Sci 33:631–681

    Google Scholar 

  5. Li LJ, Fourkas JT (2007) Multi-photon polymerization. Mater Today 10:30–37

    Google Scholar 

  6. Maruo S, Ikuta K (2000) Three-dimensional microfabrication by use of single-photon-absorbed polymerization. Appl Phys Lett 76:2656–2658

    ADS  Google Scholar 

  7. Maruo S, Fourkas JT (2008) Recent progress in multi-photon microfabrication. Laser Photonics Rev 2:100–111

    Google Scholar 

  8. Ovsianikov A, Mironov V, Stampfl J, Liska R (2012) Engineering 3D cell-culture matrices: multi-photon processing technologies for biological and tissue engineering applications. Expert Rev Med Devices 9:613–633

    Google Scholar 

  9. Sun HB, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. nmr-3D Analysis. Photopolymerization 170:169–273

    Google Scholar 

  10. Göppert-Mayer M (1931) Über Elementarakte mit zwei Quantensprüngen. Annalen der Physik 401:273–294

    ADS  Google Scholar 

  11. Blab GA, Lommerse PHM, Cognet L, Harms GS, Schmidt T (2001) Two-photon excitation action cross-sections of the autofluorescent proteins. Chem Phys Lett 350:71–77

    ADS  Google Scholar 

  12. Kamarchik E, Krylov AI (2011) Non-Condon effects in the one- and two-photon absorption spectra of the green fluorescent protein. J Phys Chem Lett 2:488–492

    Google Scholar 

  13. Schafer KJ, Hales JM, Balu M, Belfield KD, Van Stryland EW, Hagan DJ (2004) Two-photon absorption cross-sections of common photoinitiators. J Photochem Photobiol A Chem 162:497–502

    Google Scholar 

  14. Rumi M, Barlow S, Wang J, Perry JW, Marder SR (2008) Two-photon absorbing materials and two-photon-induced chemistry. Photoresponsive Polym I 213:1–95

    Google Scholar 

  15. Moon JH, Yang S (2010) Chemical aspects of three-dimensional photonic crystals. Chem Rev 110:547–574

    Google Scholar 

  16. Pucher N, Rosspeintner A, Satzinger V, Schmidt V, Gescheidt G, Stampfl J, Liska R (2009) Structure-activity relationship in D-pi-A-pi-D-based photoinitiators for the two-photon-induced photopolymerization process. Macromolecules 42:6519–6528

    ADS  Google Scholar 

  17. Fouassier PF, Rabek JF (eds) (1993) Fundamentals and methods. Elsevier Applied Science, London

    Google Scholar 

  18. Fouassier PF, Rabek JF (eds) (1993) Polymerisation mechanisms. Elsevier Applied Science, London

    Google Scholar 

  19. Cowie JMG, Arrighi V (2007) Polymers: chemistry and physics of modern materials. CRC Press, New York

    Google Scholar 

  20. Neumann MG, Schmitt CC, Ferreira GC, Correa IC (2006) The initiating radical yields and the efficiency of polymerization for various dental photoinitiators excited by different light curing units. Dental Mater 22:576–584

    Google Scholar 

  21. Serbin J, Egbert A, Ostendorf A, Chichkov BN, Houbertz R, Domann G, Schulz J, Cronauer C, Frohlich L, Popall M (2003) Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt Lett 28:301–303

    ADS  Google Scholar 

  22. Witzgall G, Vrijen R, Yablonovitch E, Doan V, Schwartz BJ (1998) Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures. Opt Lett 23:1745–1747

    ADS  Google Scholar 

  23. Teh WH, Durig U, Drechsler U, Smith CG, Guntherodt HJ (2005) Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography. J Appl Phys 97:054907

    Google Scholar 

  24. Juodkazis S, Mizeikis V, Seet KK, Miwa M, Misawa H (2005) Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology 16:846–849

    ADS  Google Scholar 

  25. Yin XB, Fang N, Zhang X, Martini IB, Schwartz BJ (2002) Near-field two-photon nanolithography using an apertureless optical probe. Appl Phys Lett 81:3663–3665

    ADS  Google Scholar 

  26. Liu YH, Nolte DD, Pyrak-Nolte LJ (2010) Large-format fabrication by two-photon polymerization in SU-8. Appl Phys A Mater Sci Proces 100:181–191

    ADS  Google Scholar 

  27. Derosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371

    Google Scholar 

  28. Ochsner M (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B Biol 39:1–18

    Google Scholar 

  29. Pattison DI, Rahmanto AS, Davies MJ (2012) Photo-oxidation of proteins. Photochem Photobiol Sci 11:38–53

    Google Scholar 

  30. Spikes JD, Shen HR, Kopeckova P, Kopecek J (1999) Photodynamic crosslinking of proteins. III. Kinetics of the FMN- and rose bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-Hydroxypropyl)methacrylamide copolymers. Photochem Photobiol 70:130–137

    Google Scholar 

  31. Spikes JD, Shen HR, Kopecek J (1999) Effects of pH on the kinetics of the FMN-and rose bengal (RB)-sensitized photooxidation of tyrosine and of tyrosine with the amino and/or carboxyl groups blocked. Photochem Photobiol 69:84S

    Google Scholar 

  32. Shen HR, Spikes JD, Smith CJ, Kopecek J (2000) Photodynamic cross-linking of proteins. V. Nature of the tyrosine-tyrosine bonds formed in the FMN-sensitized intermolecular cross-linking of N-acetyl-L-tyrosine. J Photochem Photobiol A Chem 133:115–122

    Google Scholar 

  33. Shen HR, Spikes JD, Smith CJ, Kopecek J (2000) Photodynamic cross-linking of proteins. IV. Nature of the His-His bond(s) formed in the rose bengal-photosensitized cross-linking of N-benzoyl-L-histidine. J Photochem Photobiol A Chem 130:1–6

    Google Scholar 

  34. Wang W, Nema S, Teagarden D (2010) Protein aggregation-pathways and influencing factors. Int J Pharm 390:89–99

    Google Scholar 

  35. Rehms AA, Callis PR (1993) 2-Photon fluorescence excitation-spectra of aromatic-amino-acids. Chem Phys Lett 208:276–282

    ADS  Google Scholar 

  36. Guzow K, Szabelski M, Rzeska A, Karolczak J, Sulowska H, Wiczk W (2002) Photophysical properties of tyrosine at low pH range. Chem Phys Lett 362:519–526

    ADS  Google Scholar 

  37. Birch DJS (2001) Multi-photon excited fluorescence spectroscopy of biomolecular systems. Spectrochim Acta Part A Mol Biomol Spectrosc 57:2313–2336

    ADS  Google Scholar 

  38. Engelhardt S, Hu YL, Seiler N, Riester D, Meyer W, Kruger H, Wehner M, Bremus-Kobberling E, Gillner A (2011) 3D-microfabrication of polymer-protein hybrid structures with a Q-switched microlaser. J Laser Micro Nanoeng 6:54–58

    Google Scholar 

  39. Kaehr B, Ertas N, Nielson R, Allen R, Hill RT, Plenert M, Shear JB (2006) Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser. Anal Chem 78:3198–3202

    Google Scholar 

  40. Verweij H, Vansteveninck J (1982) Model studies on photodynamic cross-linking. Photochem Photobiol 35:265–267

    Google Scholar 

  41. Dubbelman TMAR, Vansteveninck AL, Vansteveninck J (1982) Hematoporphyrin-induced photooxidation and photodynamic cross-linking of nucleic-acids and their constituents. Biochimica et Biophysica Acta 719:47–52

    Google Scholar 

  42. Balasubramanian D, Du X, Zigler JS (1990) The reaction of singlet oxygen with proteins, with special reference to crystallins. Photochem Photobiol 52:761–768

    Google Scholar 

  43. Lam MA, Pattison DI, Bottle SE, Keddie DJ, Davies MJ (2008) Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals. Chem Res Toxicol 21:2111–2119

    Google Scholar 

  44. Agon VV, Bubb WA, Wright A, Hawkins CL, Davies MJ (2006) Sensitizer-mediated photooxidation of histidine residues: evidence for the formation of reactive side-chain peroxides. Free Radical Biol Med 40:698–710

    Google Scholar 

  45. Tomita M, Irie M, Ukita T (1969) Sensitized photooxidation of histidine and its derivatives: products and mechanism of reaction. Biochemistry 8:5149–5160

    Google Scholar 

  46. DeForest CA, Anseth KS (2012) Advances in bioactive hydrogels to probe and direct cell fate. Ann Rev Chem Biomol Eng 3(3):421–444

    Google Scholar 

  47. Kasko AM, Wong DY (2010) Two-photon lithography in the future of cell-based therapeutics and regenerative medicine: a review of techniques for hydrogel patterning and controlled release. Future Med Chem 2:1669–1680

    Google Scholar 

  48. DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659–664

    ADS  Google Scholar 

  49. Baskin JM, Prescher JA, Laughlin ST, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. Proc Natl Acad Sci USA 104:16793–16797

    ADS  Google Scholar 

  50. DeForest CA, Anseth KS (2011) Cytocompatible click-based hydrogels with dynamically tunable properties through orthogonal photoconjugation and photocleavage reactions. Nat Chem 3:925–931

    Google Scholar 

  51. Yu HT, Li JB, Wu DD, Qiu ZJ, Zhang Y (2010) Chemistry and biological applications of photo-labile organic molecules. Chem Soc Rev 39:464–473

    Google Scholar 

  52. Aujard I, Benbrahim C, Gouget M, Ruel O, Baudin JB, Neveu P, Jullien L (2006) o-Nitrobenzyl photolabile protecting groups with red-shifted absorption: Syntheses and uncaging cross-sections for one- and two-photon excitation. Chem A Eur J 12:6865–6879

    Google Scholar 

  53. Seidlits SK, Schmidt CE, Shear JB (2009) High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance. Adv Funct Mater 19:3543–3551

    Google Scholar 

  54. Kasko AM, Wong DY (2010) Two-photon lithography in the future of cell-based therapeutics and regenerative medicine: a review of techniques for hydrogel patterning and controlled release. Future Med Chem 2:1669–1680

    Google Scholar 

  55. Engelhardt S, Hoch E, Borchers K, Meyer W, Kruger H, Tovar GEM, Gillner A (2011) Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization. Biofabrication 3:025003

    Google Scholar 

  56. Thiel M, Fischer J, von Freymann G, Wegener M (2010) Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett 97:221102

    Google Scholar 

  57. Turunen S, Kapyla E, Terzaki K, Viitanen J, Fotakis C, Kellomaki M, Farsari M (2011) Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity. Biofabrication 3:045002

    Google Scholar 

  58. Wang I, Bouriau M, Baldeck PL, Martineau C, Andraud C (2002) Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser. Opt Lett 27:1348–1350

    ADS  Google Scholar 

  59. Sun HB, Takada K, Kim MS, Lee KS, Kawata S (2003) Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl Phys Lett 83:1104–1106

    ADS  Google Scholar 

  60. Sun HB, Maeda M, Takada K, Chon JWM, Gu M, Kawata S (2003) Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Appl Phys Lett 83:819–821

    ADS  Google Scholar 

  61. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der Physik 322:549–560

    ADS  Google Scholar 

  62. von Smulochewski A (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspension. Annalen der Physik 326:756–780

    ADS  Google Scholar 

  63. Goodner MD, Bowman CN (2002) Development of a comprehensive free radical photopolymerization model incorporating heat and mass transfer effects in thick films. Chem Eng Sci 57:887–900

    Google Scholar 

  64. Spichty M, Turro NJ, Rist G, Birbaum JL, Dietliker K, Wolf JP, Gescheidt G (2001) Bond cleavage in the excited state of acyl phosphene oxides. Insight on the role of conformation by model calculations: a concept. J Photochem Photobiol A Chem 142:209–213

    Google Scholar 

  65. Uppal N, Shiakolas PS (2008) Modeling of temperature-dependent diffusion and polymerization kinetics and their effects on two-photon polymerization dynamics. J Micro-Nanolithography Mems Moems 7:043002

    Google Scholar 

  66. Uppal N, Shiakolas PS (2009) Process sensitivity analysis and resolution prediction for the two photon polymerization of micro/nano structures. J Manuf Sci Eng Trans ASME 131

    Google Scholar 

  67. Galajda P, Ormos P (2001) Complex micromachines produced and driven by light. Appl Phys Lett 78:249–251

    ADS  Google Scholar 

  68. von Freymann G, Ledermann A, Thiel M, Staude I, Essig S, Busch K, Wegener M (2010) Three-dimensional nanostructures for photonics. Adv Funct Mater 20:1038–1052

    Google Scholar 

  69. Fischer J, Wegener M (2012) Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev 7:22–224

    Google Scholar 

  70. Sun HB, Tanaka T, Kawata S (2002) Three-dimensional focal spots related to two-photon excitation. Appl Phys Lett 80:3673–3675

    ADS  Google Scholar 

  71. DeVoe RJ, Kalweit H, Leatherdale CA, Williams TR (2003) Voxel shapes in two-photon microfabrication. Proc SPIE 4797:310–316. Ref Type: Journal (Full)

    Google Scholar 

  72. Hell S, Reiner G, Cremer C, Stelzer EHK (1993) Aberrations in confocal fluorescence microscopy induced by mismatches in refractive-index. J Microsc Oxford 169:391–405

    Google Scholar 

  73. Sun Q, Jiang HB, Liu Y, Zhou YH, Yang H, Gong QH (2005) Effect of spherical aberration on the propagation of a tightly focused femtosecond laser pulse inside fused silica. J Opt A Pure Appl Opt 7:655–659

    ADS  Google Scholar 

  74. Huot N, Stoian R, Mermillod-Blondin A, Mauclair C, Audouard E (2007) Analysis of the effects of spherical aberration on ultrafast laser-induced refractive index variation in glass. Opt Express 15:12395–12408

    ADS  Google Scholar 

  75. Torok P, Varga P, Booker GR (1995) Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes-structure of the electromagnetic-field. J Opt Soc Am A Opt Image Sci Vis 12:2136–2144

    ADS  MathSciNet  Google Scholar 

  76. Torok P, Varga P, Nemeth G (1995) Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive-indexes. J Opt Soc Am A Opt Image Sci Vis 12:2660–2671

    ADS  MathSciNet  Google Scholar 

  77. Egner A, Schrader M, Hell SW (1998) Refractive index mismatch induced intensity and phase variations in fluorescence confocal, multi-photon and 4Pi-microscopy. Opt Commun 153:211–217

    ADS  Google Scholar 

  78. Seet KK, Mizeikis V, Juodkazis S, Misawa H (2006) Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1 mu m. Appl Phys Lett 88

    Google Scholar 

  79. Sun HB, Kawakami T, Xu Y, Ye JY, Matuso S, Misawa H, Miwa M, Kaneko R (2000) Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt Lett 25:1110–1112

    ADS  Google Scholar 

  80. Sun HB, Suwa T, Takada K, Zaccaria RP, Kim MS, Lee KS, Kawata S (2004) Shape precompensation in two-photon laser nanowriting of photonic lattices. Appl Phys Lett 85:3708–3710

    ADS  Google Scholar 

  81. Li Y, Qi FJ, Yang HH, Gong QZ, Dong XM, Duan X (2008) Nonuniform shrinkage and stretching of polymerized nanostructures fabricated by two-photon photopolymerization. Nanotechnology 19:055303

    Google Scholar 

  82. Wu DM, Fang N, Sun C, Zhang X (2002) Adhesion force of polymeric three-dimensional microstructures fabricated by microstereolithography. Appl Phys Lett 81:3963–3965

    ADS  Google Scholar 

  83. Wu DM, Fang N, Sun C, Zhang X (2006) Stiction problems in releasing of 3D microstructures and its solution. Sens Actuators A Phys 128:109–115

    Google Scholar 

  84. Ovsianikov A, Xiao SZ, Farsari M, Vamvakaki M, Fotakis C, Chichkov BN (2009) Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials. Opt Express 17:2143–2148

    ADS  Google Scholar 

  85. Vogel A, Noack J, Huttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B Lasers Opt 81:1015–1047

    ADS  Google Scholar 

  86. Schonle A, Hell SW (1998) Heating by absorption in the focus of an objective lens. Opt Lett 23:325–327

    ADS  Google Scholar 

  87. O’Brien AK, Bowman CN (2003) Modeling thermal and optical effects on photopolymerization systems. Macromolecules 36:7777–7782

    ADS  Google Scholar 

  88. Vogel A, Nahen K, Theisen D, Noack J (1996) Plasma formation in water by picosecond and nanosecond Nd:YAC laser pulses. 1. Optical breakdown at threshold and superthreshold irradiance. IEEE J Sel Top Quantum Electron 2:847–860

    Google Scholar 

  89. Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100:148–165

    ADS  Google Scholar 

  90. Vogel A, Noack J, Nahen K, Theisen D, Busch S, Parlitz U, Hammer DX, Noojin GD, Rockwell BA, Birngruber R (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B Lasers Opt 68:271–280

    ADS  Google Scholar 

  91. Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644

    Google Scholar 

  92. Williams F, Varma SP, Hillenius S (1976) Liquid water as a lone-pair amorphous-semiconductor. J Chem Phys 64:1549–1554

    ADS  Google Scholar 

  93. Sacchi CA (1991) Laser-induced electric breakdown in water. J Opt Soc Am B Opt Phys 8:337–345

    ADS  MathSciNet  Google Scholar 

  94. Quinto-Su PA, Venugopalan V (2007) Mechanisms of laser cellular microsurgery. Laser Manipulation Cells Tissues 82:113–151

    Google Scholar 

  95. Oraevsky AA, DaSilva LB, Rubenchik AM, Feit MD, Glinsky ME, Perry MD, Mammini BM, Small W, Stuart BC (1996) Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption. IEEE J Sel Top Quantum Electron 2:801–809

    Google Scholar 

  96. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Google Scholar 

  97. Tayalia P, Mendonca CR, Baldacchini T, Mooney DJ, Mazur E (2008) 3D cell-migration studies using two-photon engineered polymer scaffolds. Adv Mater 20:4494–4498

    Google Scholar 

  98. Nielsen LE (1969) Cross-linking-effect on physical properties of polymers. J Macromol Sci Rev Macromol Chem C 3:69–103

    Google Scholar 

  99. Meyer W, Engelhardt S, Novosel E, Elling B (2012) Soft polymers for building up small and smallest blood supplying systems by stereolithography. J Funct Biomater 3:257–268

    Google Scholar 

  100. Ligon SC, Baudis S, Nehl F, Wilke A, Bergmeister H, Bernhard D, Nigisch A, Stampfl J, Liska R, Husar B (2012) Improved elastomeric materials for CAD/CAM generation of vascular structures in soft tissue replacement therapies. J Tissue Eng Regen Med 6:301

    Google Scholar 

  101. Baudis S, Nehl F, Ligon SC, Nigisch A, Bergmeister H, Bernhard D, Stampfl J, Liska R (2011) Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering. Biomed Mat 6

    Google Scholar 

  102. Baudis S, Schuster M, Turecek C, Bergmeister H, Weige G, Stampfl J, Varga F, Liska R (2007) Development of flexible biocompatible photopolymers as artificial vascular replacement materials. Int J Artif Organs 30:705

    Google Scholar 

  103. Burdick JA, Anseth KS (2002) Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials 23:4315–4323

    Google Scholar 

  104. Ovsianikov A, Malinauskas M, Schlie S, Chichkov B, Gittard S, Narayan R, Lobler M, Sternberg K, Schmitz KP, Haverich A (2011) Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomaterialia 7:967–974

    Google Scholar 

  105. Kidoaki A, Matsuda T (2008) Microelastic gradient gelatinous gels to induce cellular mechanotaxis. J Biotechnol 133:225–230

    Google Scholar 

  106. Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A (2010) Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 88:899–911

    Google Scholar 

  107. Stampfl J, Baudis S, Heller C, Liska R, Neumeister A, Kling R, Ostendorf A, Spitzbart M (2008) Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J Micromech Microeng 18:125014

    Google Scholar 

  108. Wong JY, Velasco A, Rajagopalan P, Pham Q (2003) Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir 19:1908–1913

    Google Scholar 

  109. Araujo PHH, Sayer C, Poco JGR, Giudici R (2002) Techniques for reducing residual monomer content in polymers: a review. Polym Eng Sci 42:1442–1468

    Google Scholar 

  110. Khripin CY, Brinker CJ, Kaehr B (2010) Mechanically tunable multi-photon fabricated protein hydrogels investigated using atomic force microscopy. Soft Matter 6:2842–2848

    ADS  Google Scholar 

  111. Kaehr B, Shear JB (2008) Multi-photon fabrication of chemically responsive protein hydrogels for microactuation. Proc Natl Acad Sci USA 105:8850–8854

    ADS  Google Scholar 

  112. Liao CY, Bouriauand M, Baldeck PL, Leon JC, Masclet C, Chung TT (2007) Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization. Appl Phys Lett 91:033108

    Google Scholar 

  113. Karageorgiou V, Kaplan D (2005) Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Google Scholar 

  114. Ovsianikov A, Deiwick A, Van Vlierberghe S, Pflaum M, Wilhelmi M, Dubruel P, Chichkov B (2011) Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials 4:288–299

    ADS  Google Scholar 

  115. Rumi M, Ehrlich JE, Heikal AA, Perry JW, Barlow S, Hu ZY, Cord-Maughon D, Parker TC, Rockel H, Thayumanavan S, Marder SR, Beljonne D, Bredas JL (2000) Structure-property relationships for two-photon absorbing chromophores: bis-donor diphenylpolyene and bis(styryl)benzene derivatives. J Am Chem Soc 122:9500–9510

    Google Scholar 

  116. Kato J, Takeyasu N, Adachi Y, Sun HB, Kawata S (2005), Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86:044102

    Google Scholar 

  117. Formanek F, Takeyasu N, Tanaka T, Chiyoda K, Ishikawa A, Kawata S (2006) Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt Express 14:800–809

    ADS  Google Scholar 

  118. Dong XZ, Zhao ZS, Duan XM (2007) Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multi-photon processing. Appl Phys Lett 91:181109

    Google Scholar 

  119. Salter PS, Booth MJ (2011) Addressable microlens array for parallel laser microfabrication. Opt Lett 36:2302–2304

    ADS  Google Scholar 

  120. Ritschdorff ET, Nielson R, Shear JB (2012) Multi-focal multi-photon lithography. Lab A Chip 12:867–871

    Google Scholar 

  121. Obata K, Koch J, Hinze U, Chichkov BN (2010) Multi-focus two-photon polymerization technique based on individually controlled phase modulation. Opt Express 18:17193–17200

    ADS  Google Scholar 

  122. Haske W, Chen VW, Hales JM, Dong WT, Barlow S, Marder SR, Perry JW (2007) 65 nm feature sizes using visible wavelength 3-D multi-photon lithography. Opt Express 15:3426–3436

    ADS  Google Scholar 

  123. Staude I, Thiel M, Essig S, Wolff C, Busch K, von Freymann G, Wegener M (2010) Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Opt Lett 35:1094–1096

    Google Scholar 

  124. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission—stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    ADS  Google Scholar 

  125. Hell SW (2003) Toward fluorescence nanoscopy. Nat Biotechnol 21:1347–1355

    Google Scholar 

  126. Willig KI, Kellner RR, Medda R, Hein B, Jakobs S, Hell SW (2006) Nanoscale resolution in GFP-based microscopy. Nat Methods 3:721–723

    Google Scholar 

  127. Willig KI, Keller J, Bossi M, Hell SW (2006) STED microscopy resolves nanoparticle assemblies. New J Phys 8:106

    Google Scholar 

  128. Willig KI, Rizzoli SO, Westphal V, Jahn R, Hell SW (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    ADS  Google Scholar 

  129. Fischer J, von Freymann G, Wegener M (2010) The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv Mater 22:3578–3582

    Google Scholar 

  130. Fischer J, Wegener M (2011) Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Opt Mater Express 1:614–624

    Google Scholar 

  131. Fourkas JT (2010) Nanoscale photolithography with visible light. J Phys Chem Lett 1:1221–1227

    Google Scholar 

  132. Li LJ, Gattass RR, Gershgoren E, Hwang H, Fourkas JT (2009) Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913

    ADS  Google Scholar 

  133. Stocker MP, Li LJ, Gattass RR, Fourkas JT (2011) Multi-photon photoresists giving nanoscale resolution that is inversely dependent on exposure time. Nat Chem 3:223–227

    Google Scholar 

  134. Stichel T, Hecht B, Houbertz R, Sextl G (2010) Two-photon polymerization as method for the fabrication of large scale biomedical scaffold applications. J Laser Micro Nanoeng 5:209–212

    Google Scholar 

  135. Hsieh TM, Ng CWB, Narayanan K, Wan ACA, Ying JY (2010) Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials 31:7648–7652

    Google Scholar 

  136. Gittard SD, Narayan R (2010) Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devices 7:343–356

    Google Scholar 

  137. Melchels FPW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130

    Google Scholar 

  138. Houbertz R, Steenhusen S, Stichel T, Sextl G (2010) Two-photon polymerization of inorganic-organic hybrid polymers as scalable technology using ultra-short laser pulses. In: Duarte FJ (ed) Coherence and ultrashort pulse laser emission. InTech, Rijeka

    Google Scholar 

  139. Peltola SM, Melchels FPW, Grijpma DW, Kellomaki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40:268–280

    Google Scholar 

  140. Engelhardt S, Refle O, Wehner M (2012) Method for the fabrication of macroscopic high resolution scaffolds by the combination of inkjet-printing and laser initiated polymerization. J Tissue Eng Regen Med 6:299–300

    Google Scholar 

  141. Refle O, Graf C, Engelhardt S, Visotschnig R (2012) New method for freeform fabrication for microstructured parts by combination of inkjet-printing and multi-photon polymerization. In: Direct digital manufacturing conference

    Google Scholar 

  142. Haycock JW (2011) 3D cell culture: a review of current approaches and techniques. Methods Mol Biol 695:1–15

    Google Scholar 

  143. Cukierman E, Pankov R, Stevens DR, Yamada KM (2001) Taking cell-matrix adhesions to the third dimension. Science 294:1708–1712

    ADS  Google Scholar 

  144. Petersen OW, Ronnovjessen L, Howlett AR, Bissell MJ (1992) Interaction with basement-membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial-cells. Proc Natl Acad Sci USA 89:9064–9068

    ADS  Google Scholar 

  145. Berginski ME, Vitriol EA, Hahn KM, Gomez SM (2011) High-resolution quantification of focal adhesion spatiotemporal dynamics in living cells. Plos One 6:e22025

    Google Scholar 

  146. Koroleva A, Gittard S, Schlie S, Deiwick A, Jockenhoevel S, Chichkov B (2012) Fabrication of fibrin scaffolds with controlled microscale architecture by a two-photon polymerization-micromolding technique. Biofabrication 4:015001

    Google Scholar 

  147. Koroleva A, Schlie S, Fadeeva E, Gittard SD, Miller P, Ovsianikov A, Koch J, Narayan RJ, Chichkov BN (2010) Microreplication of laser-fabricated surface and three-dimensional structures. J Opt 12:124009

    Google Scholar 

  148. Allen R, Nielson R, Wise DD, Shear JB (2005) Catalytic three-dimensional protein architectures. Anal Chem 77:5089–5095

    Google Scholar 

  149. Kaehr B, Allen R, Javier DJ, Currie J, Shear JB (2004) Guiding neuronal development with in situ microfabrication. Proc Natl Acad Sci USA 101:16104–16108

    ADS  Google Scholar 

  150. Basu S, Cunningham LP, Pins GD, Bush KA, Taboada R, Howell AR, Wang J, Campagnola PJ (2005) Multi-photon excited fabrication of collagen matrixes cross-linked by a modified benzophenone dimer: bioactivity and enzymatic degradation. Biomacromolecules 6:1465–1474

    Google Scholar 

  151. Klein F, Striebel T, Fischer J, Jiang ZX, Franz CM, von Freymann G, Wegener M, Bastmeyer M (2010) Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 22:868–871

    Google Scholar 

  152. Klein F, Richter B, Striebel T, Franz CM, von Freymann G, Wegener M, Bastmeyer M (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345

    Google Scholar 

  153. Dinca V, Kasotakis E, Catherine J, Mourka A, Ranella A, Ovsianikov A, Chichkov BN, Farsari M, Mitraki A, Fotakis C (2008) Directed three-dimensional patterning of self-assembled peptide fibrils. Nano Lett 8:538–543

    ADS  Google Scholar 

  154. Drakakis TS, Papadakis G, Sambani K, Filippidis G, Georgiou S, Gizeli E, Fotakis C, Farsari M (2006) Construction of three-dimensional biomolecule structures employing femtosecond lasers. Appl Phys Lett 89:144108

    Google Scholar 

  155. Claeyssens F, Hasan EA, Gaidukeviciute A, Achilleos DS, Ranella A, Reinhardt C, Ovsianikov A, Xiao S, Fotakis C, Vamvakaki M, Chichkov BN, Farsari M (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25:3219–3223

    Google Scholar 

  156. Hidai H, Hwang DJ, Grigoropoulos CP (2008) Self-grown fiber fabrication by two-photon photopolymerization. Appl Phys A Mater Sci Proces 93:443–445

    ADS  Google Scholar 

  157. Jeon H, Kim E, Grigoropoulos CP (2011) Measurement of contractile forces generated by individual fibroblasts on self-standing fiber scaffolds. Biomed Microdevices 13:107–115

    Google Scholar 

  158. Lee SH, Moon JJ, West JL (2008) Three-dimensional micropatterning of bioactive hydrogels via two-photon laser scanning photolithography for guided 3D cell migration. Biomaterials 29:2962–2968

    Google Scholar 

  159. Culver JC, Hoffmann JC, Poche RA, Slater JH, West JL, Dickinson ME (2012) Three-dimensional biomimetic patterning in hydrogels to guide cellular organization. Adv Mater 24:2344–2348

    Google Scholar 

  160. Hoffmann JC, West JL (2010) Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels. Soft Matter 6:5056–5063

    ADS  Google Scholar 

  161. Pitts JD, Campagnola PJ, Epling GA, Goodman SL (2000) Submicron multi-photon free-form fabrication of proteins and polymers: studies of reaction efficiencies and applications in sustained release. Macromolecules 33:1514–1523

    ADS  Google Scholar 

  162. Basu S, Campagnola PJ (2004) Properties of crosslinked protein matrices for tissue engineering applications synthesized by multi-photon excitation. J Biomed Mater Res Part A 71A:359–368

    Google Scholar 

  163. Basu S, Campagnola PJ (2004) Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation. Biomacromolecules 5:572–579

    Google Scholar 

  164. Kim DH, Provenzano PP, Smith CL, Levchenko A (2012) Matrix nanotopography as a regulator of cell function. J Cell Biol 197:351–360

    Google Scholar 

  165. Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A (2012) Engineering microscale topographies to control the cell-substrate interface. Biomaterials 33:5230–5246

    Google Scholar 

  166. Rivron NC, Vrij EJ, Rouwkema J, Le GS, van den BA, Truckenmuller RK, van Blitterswijk CA (2012) Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc Natl Acad Sci USA 109:6886–6891

    Google Scholar 

  167. Unadkat HV, Hulsman M, Cornelissen K, Papenburg BJ, Truckenmuller RK, Carpenter AE, Wessling M, Post GF, Uetz M, Reinders MJ, Stamatialis D, van Blitterswijk CA, de Boer J (2011) An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci USA 108:16565–16570

    Google Scholar 

  168. Offenhausser A, Bocker-Meffert S, Decker T, Helpenstein R, Gasteier P, Groll J, Moller M, Reska A, Schafer S, Schulte P, Vogt-Eisele A (2007) Microcontact printing of proteins for neuronal cell guidance. Soft Matter 3:290–298

    ADS  Google Scholar 

  169. Costantino S, Heinze KG, Martinez OE, De KP, Wiseman PW (2005) Two-photon fluorescent microlithography for live-cell imaging. Microsc Res Technol 68:272–276

    Google Scholar 

  170. Cunningham LP, Veilleux MP, Campagnola PJ (2006) Freeform multi-photon excited microfabrication for biological applications using a rapid prototyping CAD-based approach. Opt Express 14:8613–8621

    ADS  Google Scholar 

  171. Liska R, Schuster M, Infuhr R, Tureeek C, Fritscher C, Seidl B, Schmidt V, Kuna L, Haase A, Varga F, Lichtenegger H, Stampfl J (2007) Photopolymers for rapid prototyping. J Coatings Technol Res 4:505–510

    Google Scholar 

  172. Pins GD, Bush KA, Cunningham LP, Carnpagnola PJ (2006) Multi-photon excited fabricated nano and micro patterned extracellular matrix proteins direct cellular morphology. J Biomed Mater Res Part A 78A:194–204

    Google Scholar 

  173. Chen XY, Brewer MA, Zou CP, Campagnola PJ (2009) Adhesion and migration of ovarian cancer cells on crosslinked laminin fibers nanofabricated by multi-photon excited photochemistry. Integrative Biol 1:469–476

    Google Scholar 

  174. Rowe RG, Weiss SJ (2008) Breaching the basement membrane: who, when and how? Trends Cell Biol 18:560–574

    Google Scholar 

  175. Sasaki T, Fassler R, Hohenester E (2004) Laminin: the crux of basement membrane assembly. J Cell Biol 164:959–963

    Google Scholar 

  176. Yurchenco PD, Cheng YS, Colognato H (1992) Laminin forms an independent network in basement-membranes. J Cell Biol 117:1119–1133

    Google Scholar 

  177. Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Moller L, Drager G, Chichkov B (2011) Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12:851–858

    Google Scholar 

  178. Schlie S, Ngezahayo A, Ovsianikov A, Fabian T, Kolb HA, Haferkamp H, Chichkov BN (2007) Three-dimensional cell growth on structures fabricated from \({\rm {ORMOCER}}^{\textregistered }\) by two-photon polymerization technique. J Biomater Appl 22:275–287

    Google Scholar 

  179. Klein F, Striebel T, Fischer J, Jiang Z, Franz C, von Freymann G, Wegener M, Bastmeyer M (2010) Tailored three-dimensional microstructure scaffolds for cell culture. Eur J Cell Biol 89:57

    Google Scholar 

  180. Camci-Unal G, Nichol JW, Bae H, Tekin H, Bischoff J, Khademhosseini A (2012) Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J Tissue Eng Regen Med 7:337–347

    Google Scholar 

  181. Jha AK, Xu X, Duncan RL, Jia X (2011) Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials 32:2466–2478

    Google Scholar 

  182. Skardal A, Sarker SF, Crabbe A, Nickerson CA, Prestwich GD (2010) The generation of 3-D tissue models based on hyaluronan hydrogel-coated microcarriers within a rotating wall vessel bioreactor. Biomaterials 31:8426–8435

    Google Scholar 

  183. Skardal A, Smith L, Bharadwaj S, Atala A, Soker S, Zhang Y (2012) Tissue specific synthetic ECM hydrogels for 3-D in vitro maintenance of hepatocyte function. Biomaterials 33:4565–4575

    Google Scholar 

  184. Yee D, Hanjaya-Putra D, Bose V, Luong E, Gerecht S (2011) Hyaluronic Acid hydrogels support cord-like structures from endothelial colony-forming cells. Tissue Eng Part A 17:1351–1361

    Google Scholar 

  185. Moon JJ, Saik JE, Poche RA, Leslie-Barbick JE, Lee SH, Smith AA, Dickinson ME, West JL (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31:3840–3847

    Google Scholar 

  186. Wylie RG, Ahsan S, Aizawa Y, Maxwell KL, Morshead CM, Shoichet MS (2011) Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat Mater 10:799–806

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Engelhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engelhardt, S. (2013). Direct Laser Writing. In: Schmidt, V., Belegratis, M. (eds) Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41341-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41341-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41340-7

  • Online ISBN: 978-3-642-41341-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics