Skip to main content

Introduction and Scope of the Book

  • Chapter
  • First Online:
Laser Technology in Biomimetics

Abstract

This chapter introduces the scope of the book. It is intended to guide the reader through the book, to find specific information by shortly summarizing information from the following chapters and to build a cross reference to the various applied methods and the corresponding applications. The laser as a powerful light source can be found in nearly any technical application, ranging from consumer electronics (CD, DVD, blu-ray player, scanner), metrology (including environmental monitoring), scientific research (laser development to novel fields in quantum physics, photonics and medicine), arts, industry, information technology to lithography and material processing. It is obvious that the laser meets many requirements from technical challenges inspired by natural evolutionary solutions. Not all of them can be treated in a single book, but a cross section of the powerful combination of both, laser technology and biomimetic thinking, form a powerful approach to novel technical application scenarios as presented in the next chapters, which are considered as guideline and orientation for the reader depending on a laser or application based approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steindorfer MA, Schmidt V, Belegratis M, Stadlober B, Krenn JR (2012) Detailed simulation of structural color generation inspired by the morpho butterfly. Opt Express 20:21485–21494

    Article  ADS  Google Scholar 

  2. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  3. Table 1 adapted from Bäuerle D, (2008) Laser: grundlagen und anwendungen in photonik, technik, medizin und kunst. Wiley-VCH, Verlag GmbH & Co KGaA, Weinheim. ISBN 978-3-527-40803-7

    Google Scholar 

  4. Partel S, Zoppel S, Hudek P, Bich A, Vogler U, Hornung M, Voelkel R (2010) Contact and proximity lithography using 193 nm excimer laser in mask aligner. Microelectron Eng 87:936–939

    Article  Google Scholar 

  5. Wang Q, Zhang Y, Gao D (1996) Theoretical study on the fabrication of a microlens using the excimer laser chemical vapor deposition technique. Thin Solid Films 287:243–246

    Article  ADS  Google Scholar 

  6. Chiu C-C, Lee Y-C (2011) Fabricating of aspheric micro-lens array by excimer laser micromachining. Opt Lasers Eng 49:1232–1237

    Article  Google Scholar 

  7. Vossmerbaeumer U (2010) Application principles of excimer lasers in ophthalmology. Med Laser Appl 25:250–257

    Article  Google Scholar 

  8. Vainos N (ed) (2012) Laser growth and processing of photonic devices. Woodhead Publishing, ISBN: 978-1845699369

    Google Scholar 

  9. Neumeister A, Himmelhuber R, Materlik C, Temme T, Pape F, Gatzen H, Ostendorf A (008) Properties of three-dimensional precision objects fabricated by using laser based micro stereo lithography. JLMN-J Laser Micro/Nanoeng 3(2):67–72

    Article  Google Scholar 

  10. Houbertz R, Steenhusen S, Stichel T and Sextl G (2010) Two-photon polymerization of inorganic-organic hybrid polymers as scalable technology using ultra-short laser pulses. In: Duarte (FJ) Coherence and ultrashort pulse laser emission 583. InTech, Rijeka

    Google Scholar 

  11. Misawa H and Juodkazis S (eds) (2006) 3D laser microfabrication: principles and applications. Wiley-VCH, Verlag

    Google Scholar 

  12. Sun HB, Kawata S (2004) Two-photon photopolymerization and 3D lithographic microfabrication. APS 170:169–273

    Google Scholar 

  13. Maruo S, Fourkas JT (2008) Recent progress in multiphoton microfabrication. Laser Photonics Rev 1–2:100–111

    Article  Google Scholar 

  14. Sun H-B, Kawakami T, Xu Y, Ye J-Y, Matuso S, Misawa H, Miwa M, Kaneko R (2000) Real three-dimensional microstructures fabricated by photopolymerization of resins through two-photon absorption. Opt Lett 25(15):1110

    Article  ADS  Google Scholar 

  15. Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA (2007) Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int J Applied Ceram Technol 4(1):22–29

    Article  Google Scholar 

  16. Ovsianikov A, Ostendorf A, Chichkov BN (2007) Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine. Appl Surf Sci 253:6599–6602

    Article  ADS  Google Scholar 

  17. Klein F, Striebel T, Fischer J, Jiang Z, Franz C, von Freymann G, Wegener M, Bastmeyer M (2010) Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 22:868

    Article  Google Scholar 

  18. Nielson R, Kaehr B, Shear JB (2009) Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small 5(1):120–125

    Article  Google Scholar 

  19. Torgersen J, Baudrimont A, Pucher N, Stadlmann K, Cicha K, Heller C, Liska R and Stampfl J (2010) In vivo writing using two-photon-polymerization. In: Proceedings of LPM2010 - The 11th International Symposium on Laser Precision Microfabrication

    Google Scholar 

  20. Fu Y, Ngoi BKA (2001) Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology. Opt Eng 40:511

    Article  ADS  Google Scholar 

  21. Wang Z, Zhao G, Zhang X, Heguang L, Zhao N (2011) Fabrication of two-dimensional lattices by using photosensitive sol-gel and four-beam laser interference. J Non-Cryst Solids 357:1223–1227

    Article  ADS  Google Scholar 

  22. Della Giustina G, Zacco G, Zanchetta E, Gugliemi M, Romanato F, Brusatin G (2011) Interferential lithography of bragg gratings on hybrid organic-inorganic sol-gel materials. Microelectron Eng 88:1923–1926

    Article  Google Scholar 

  23. Daniel C (2006) Biomimetic structures for mechanical applications by interfering laser beams: more than solely holographic gratings. J Mater Res 21(8):2098

    Article  ADS  MathSciNet  Google Scholar 

  24. Lasagni AF, Hendricks JL, Shaw CM, Yuan D, Martin DC, Das S (2009) Direct laser interference patterning of poly3, 4-ethylene dioxythiophene-polystyrene sulfonate (PEDOT:PSS) thin films. Appl Surf Sci 255:9186–9192

    Article  ADS  Google Scholar 

  25. Xu D, Chen KP, Ohlinger K, Lin Y (2010) Holographic fabrication of three-dimensional woodpile-type photonic crystal templates using phase mask technique. In: Kim KY (ed) Recent optical and photonic technologies. ISBN 978-953-7619-71-8, p 450

    Google Scholar 

  26. Lasagni AF, Roch T, Langheinrich D, Bieda M, Wetzig A (2011) Large area direct fabrication of periodic arrays using interference patterning. Phys Procedia 12:214–220

    Article  Google Scholar 

  27. Byun I, Kim J (2010) Cost-effective laser interference lithography using a 405 nm AlInGaN semiconductor laser. J Micromech Microeng 20:55024

    Article  Google Scholar 

  28. Stankevicius E, Malinauskas M, Raciukaitis G (2011) Fabrication of scaffolds and micro-lenses array in a negative photopolymer SZ2080 by multi-photon polymerization and four-femtosecond-beam interference. Phys Procedia 12:82–88

    Article  Google Scholar 

  29. Hon KKB, Li L, Hutchings IM (2008) Direct writing technology–advances and developments. CIRP Ann Manuf Technol 57:601–620

    Article  Google Scholar 

  30. Palla-Papavlu A, Dinca V, Luculescu C, Shaw-Stewart J, Nagel M, Lippert T, Dinescu M (2010) Laser induced forward transfer of soft materials. J Opt 12:124014

    Article  ADS  Google Scholar 

  31. Shaw Stewart J, Lippert T, Nagel M, Nüesch F, Wokaun A (2011) Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection. ACS Appl Mater Interfaces 3:309–316

    Article  Google Scholar 

  32. Rapp L, Nénon S, Alloncle AP, Videlot-Ackermann C, Fages F, Delaporte P (2011) Multilayer laser printing for organic thin film transistors. Appl Surf Sci 257:5152–5155

    Article  ADS  Google Scholar 

  33. Papadopoulou EL, Axente E, Magoulakis E, Fotakis C, Loukakos PA (2010) Laser induced forward transfer of metal oxides using femtosecond double pulses. Appl Surf Sci 257:508–511

    Article  ADS  Google Scholar 

  34. Othon CM, Laracuente A, Ladouceur HD, Ringeisen BR (2008) Sub-micron parallel laser direct-write. Appl Surf Sci 255:3407–3413

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R. Belegratis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, V., Belegratis, M.R. (2013). Introduction and Scope of the Book. In: Schmidt, V., Belegratis, M. (eds) Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41341-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41341-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41340-7

  • Online ISBN: 978-3-642-41341-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics