Real-Time Urban Monitoring in Dublin Using Semantic and Stream Technologies

  • Simone Tallevi-Diotallevi
  • Spyros Kotoulas
  • Luca Foschini
  • Freddy Lécué
  • Antonio Corradi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8219)


Several sources of information, from people, systems, things, are already available in most modern cities. Processing these continuous flows of information and capturing insight poses unique technical challenges that span from response time constraints to data heterogeneity, in terms of format and throughput. To tackle these problems, we focus on a novel prototype to ease real-time monitoring and decision-making processes for the City of Dublin with three main original technical aspects: (i) an extension to SPARQL to support efficient querying of heterogeneous streams; (ii) a query execution framework and runtime environment based on IBM InfoSphere Streams, a high-performance, industrial strength, stream processing engine; (iii) a hybrid RDFS reasoner, optimized for our stream processing execution framework. Our approach has been validated with real data collected on the field, as shown in our Dublin City video demonstration. Results indicate that real-time processing of city information streams based on semantic technologies is indeed not only possible, but also efficient, scalable and low-latency.


Data Stream Stream Processing Smart City Static Knowledge Triple Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Valle, E.D., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning upon rapidly changing information. IEEE Intelligent Systems 24(6), 83–89 (2009)CrossRefGoogle Scholar
  2. 2.
    Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Record 30(3), 109–120 (2001)CrossRefGoogle Scholar
  3. 3.
    Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H., Hall, W., Schraefel, M.: Linked open government data: Lessons from IEEE Intelligent Systems 27(3), 16–24 (2012)CrossRefGoogle Scholar
  4. 4.
    Nash, O.: Dublin bikes revisited (blog post),
  5. 5.
    Weather Underground Web Service,
  6. 6.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web of spatial open data. Semantic Web (2011)Google Scholar
  7. 7.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)Google Scholar
  8. 8.
    Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event processing and stream reasoning. In: WWW, pp. 635–644 (2011)Google Scholar
  9. 9.
    Le-Phuoc, D., Dao-Tran, M., Parreira, J. X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Barbieri, D.F., Braga, D., Ceri, S., Valle, E.D., Grossniklaus, M.: C-sparql: Sparql for continuous querying. In: WWW, pp. 1061–1062 (2009)Google Scholar
  11. 11.
    Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O., Koutsopoulos, H.N., Moran, C.: IBM infosphere streams for scalable, real-time, intelligent transportation services. In: SIGMOD, pp. 1093–1104 (2010)Google Scholar
  12. 12.
    Luo, C., Thakkar, H., Wang, H., Zaniolo, C.: A native extension of sql for mining data streams. In: SIGMOD, pp. 873–875 (2005)Google Scholar
  13. 13.
    Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Monitoring streams - a new class of data management applications. In: VLDB, pp. 215–226 (2002)Google Scholar
  14. 14.
    Liu, L., Pu, C., Tang, W.: Correction to “continual queries for internet scale event-driven information delivery”. IEEE Trans. Knowl. Data Eng. 12(5), 861 (2000)CrossRefGoogle Scholar
  15. 15.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Reiss, F., Shah, M.A.: Telegraphcq: Continuous dataflow processing. In: SIGMOD Conference, p. 668 (2003)Google Scholar
  16. 16.
    Bolles, A., Grawunder, M., Jacobi, J.: Streaming SPARQL - extending SPARQL to process data streams. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 448–462. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Rodriguez, A., McGrath, R.E., Liu, Y., Myers, J.D.: Semantic management of streaming data. In: International Workshop on Semantic Sensor Networks at ISWC (2009)Google Scholar
  18. 18.
    Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance system. In: CIKM, pp. 831–836 (2011)Google Scholar
  19. 19.
    Sandu, D.: Operational and real-time business intelligence. Revista Informatica Economică 3(47), 33–36 (2008)Google Scholar
  20. 20.
    Eckerson, W.W.: Performance dashboards: measuring, monitoring, and managing your business, 2nd edn. John Wiley and Sons (2010)Google Scholar
  21. 21.
    Pankanti, S., Brown, L., Connell, J., Datta, A., Fan, Q., Feris, R., Haas, N., Li, Y., Ratha, N., Trinh, H.: Practical computer vision: Example techniques and challenges. IBM Journal of Research and Development 55(5), 3:1–3:12 (2011)Google Scholar
  22. 22.
    Le-Phuoc, D., Dao-Tran, M., Parreira, J.X., Hauswirth, M.: A native and adaptive approach for unified processing of linked streams and linked data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 370–388. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    IBM: Ibm infosphere streams - harnessing data in motion. In: WWW (2010)Google Scholar
  24. 24.
    Forgy, C.: Rete: A fast algorithm for the many pattern/many object pattern match problem. Artificial Intelligence 19(1), 17–37 (1982)CrossRefGoogle Scholar
  25. 25.
    Urbani, J., Kotoulas, S., Maassen, J., Van Harmelen, F., Bal, H.: Webpie: A web-scale parallel inference engine using mapreduce. Web Semant. 10, 59–75 (2012)CrossRefGoogle Scholar
  26. 26.
    Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base systems. Web Semantics 3, 158–182 (2005)CrossRefGoogle Scholar
  27. 27.
    Dublin City Council: Noise monitoring data,
  28. 28.
    Dublin City Council: Air pollution monitoring data,
  29. 29.
    Zhang, Y., Duc, P.M., Corcho, O., Calbimonte, J.-P.: SRBench: A streaming RDF/SPARQL benchmark. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 641–657. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simone Tallevi-Diotallevi
    • 1
    • 2
  • Spyros Kotoulas
    • 1
  • Luca Foschini
    • 2
  • Freddy Lécué
    • 1
  • Antonio Corradi
    • 2
  1. 1.Smarter Cities Technology CentreIBM ResearchIreland
  2. 2.Dip. Informatica Scienza e Ingegneria, DISIUniversità di BolognaItaly

Personalised recommendations