Statistical Knowledge Patterns: Identifying Synonymous Relations in Large Linked Datasets

  • Ziqi Zhang
  • Anna Lisa Gentile
  • Eva Blomqvist
  • Isabelle Augenstein
  • Fabio Ciravegna
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8218)


The Web of Data is a rich common resource with billions of triples available in thousands of datasets and individual Web documents created by both expert and non-expert ontologists. A common problem is the imprecision in the use of vocabularies: annotators can misunderstand the semantics of a class or property or may not be able to find the right objects to annotate with. This decreases the quality of data and may eventually hamper its usability over large scale. This paper describes Statistical Knowledge Patterns (SKP) as a means to address this issue. SKPs encapsulate key information about ontology classes, including synonymous properties in (and across) datasets, and are automatically generated based on statistical data analysis. SKPs can be effectively used to automatically normalise data, and hence increase recall in querying. Both pattern extraction and pattern usage are completely automated. The main benefits of SKPs are that: (1) their structure allows for both accurate query expansion and restriction; (2) they are context dependent, hence they describe the usage and meaning of properties in the context of a particular class; and (3) they can be generated offline, hence the equivalence among relations can be used efficiently at run time.


Link Data Main Class Query Expansion Link Open Data Ontology Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Augenstein, I., Gentile, A.L., Norton, B., Zhang, Z., Ciravegna, F.: Mapping Keywords to Linked Data Resources for Automatic Query Expansion. In: Proc. of the 2nd International Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (2013)Google Scholar
  2. 2.
    Basse, A., Gandon, F., Mirbel, I., Lo, M.: DFS-based frequent graph pattern extraction to characterize the content of RDF Triple Stores. In: Proceedings of the WebSci 2010: Extending the Frontiers of Society On-Line, Raleigh, NC, US, April 26-27 (2010)Google Scholar
  3. 3.
    Blomqvist, E.: Ontocase-automatic ontology enrichment based on ontology design patterns. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 65–80. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Budanitsky, A., Hirst, G.: Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Comput. Linguist. 32(1), 13–47 (2006)CrossRefzbMATHGoogle Scholar
  5. 5.
    Cabrio, E., Aprosio, A.P., Cojan, J., Magnini, B., Gandon, F., Lavelli, A.: QAKiS @ QALD-2. In: Proceedings of the ESWC 2012 Workshop Interacting with Linked Data, Heraklion, Greece (2012)Google Scholar
  6. 6.
    Duan, S., Fokoue, A., Hassanzadeh, O., Kementsietsidis, A., Srinivas, K., Ward, M.J.: Instance-Based Matching of Large Ontologies Using Locality-Sensitive Hashing. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 49–64. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook of Ontologies. International Handbooks on Information Systems, vol. 2, Springer (2009)Google Scholar
  8. 8.
    Gangemi, A., Presutti, V.: Towards a pattern science for the Semantic Web. Semantic Web 1(1-2), 61–68 (2010)Google Scholar
  9. 9.
    Le, N.T., Ichise, R., Le, H.B.: Detecting hidden relations in geographic data. In: Proceedings of the 4th International Conference on Advances in Semantic Processing, pp. 61–68 (2010)Google Scholar
  10. 10.
    Musetti, A., Nuzzolese, A., Draicchio, F., Presutti, V., Blomqvist, E., Gangemi, A., Ciancarini, P.: Aemoo: Exploratory Search based on Knowledge Patterns over the Semantic Web. In: Finalist of the Semantic Web Challenge 2011 (2011)Google Scholar
  11. 11.
    Nuzzolese, A.G., Gangemi, A., Presutti, V., Ciancarini, P.: Encyclopedic knowledge patterns from wikipedia links. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 520–536. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Parundekar, R., Knoblock, C.A., Ambite, J.L.: Discovering concept coverings in ontologies of linked data sources. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 427–443. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Presutti, V., Aroyo, L., Adamou, A., Schopman, B.A.C., Gangemi, A., Schreiber, G.: Extracting Core Knowledge from Linked Data. In: Proc. of the 2nd Intl. Workshop on Consuming Linked Data (COLD 2011), Bonn, Germany, vol. 782, (2011)Google Scholar
  14. 14.
    Presutti, V., Blomqvist, E., Daga, E., Gangemi, A.: Pattern-based ontology design. In: Suárez-Figueroa, M.C., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 35–64. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Schopman, B., Wang, S., Isaac, A., Schlobach, S.: Instance-Based Ontology Matching by Instance Enrichment. Journal on Data Semantics 1(4), 219–236 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ziqi Zhang
    • 1
  • Anna Lisa Gentile
    • 1
  • Eva Blomqvist
    • 2
  • Isabelle Augenstein
    • 1
  • Fabio Ciravegna
    • 1
  1. 1.Department of Computer ScienceUniversity of SheffieldUK
  2. 2.Department of Computer and Information ScienceLinköping UniversitySweden

Personalised recommendations