Abstract
The discovery of links between resources within knowledge bases is of crucial importance to realize the vision of the Semantic Web. Addressing this task is especially challenging when dealing with geo-spatial datasets due to their sheer size and the potential complexity of single geo-spatial objects. Yet, so far, little attention has been paid to the characteristics of geo-spatial data within the context of link discovery. In this paper, we address this gap by presenting Orchid, a reduction-ratio-optimal link discovery approach designed especially for geo-spatial data. Orchid relies on a combination of the Hausdorff and orthodromic metrics to compute the distance between geo-spatial objects. We first present two novel approaches for the efficient computation of Hausdorff distances. Then, we present the space tiling approach implemented by Orchid and prove that it is optimal with respect to the reduction ratio that it can achieve. The evaluation of our approaches is carried out on three real datasets of different size and complexity. Our results suggest that our approaches to the computation of Hausdorff distances require two orders of magnitude less orthodromic distances computations to compare geographical data. Moreover, they require two orders of magnitude less time than a naive approach to achieve this goal. Finally, our results indicate that Orchid scales to large datasets while outperforming the state of the art significantly.
Chapter PDF
Similar content being viewed by others
References
Atallah, M.J.: A linear time algorithm for the hausdorff distance between convex polygons. Technical report, Purdue University, Department of Computer Science (1983)
Atallah, M.J., Ribeiro, C.C., Lifschitz, S.: Computing some distance functions between polygons. Pattern Recognition 24(8), 775–781 (1991)
Bartoň, M., Hanniel, I., Elber, G., Kim, M.-S.: Precise hausdorff distance computation between polygonal meshes. Comput. Aided Geom. Des. 27(8), 580–591 (2010)
Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)
Guthe, M., Borodin, P., Klein, R.: Fast and accurate hausdorff distance calculation between meshes. J. of WSCG 13, 41–48 (2005)
Isele, R., Jentzsch, A., Bizer, C.: Efficient Multidimensional Blocking for Link Discovery without losing Recall. In: WebDB (2011)
Köpcke, H., Rahm, E.: Frameworks for entity matching: A comparison. Data Knowl. Eng. 69(2), 197–210 (2010)
Li, G., Deng, D., Wang, J., Feng, J.: Pass-join: a partition-based method for similarity joins. Proc. VLDB Endow. 5(3), 253–264 (2011)
Ngonga Ngomo, A.C.: A Time-Efficient Hybrid Approach to Link Discovery. In: OM 2011 (2011)
Ngonga Ngomo, A.-C.: Link discovery with guaranteed reduction ratio in affine spaces with minkowski measures. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 378–393. Springer, Heidelberg (2012)
Ngonga Ngomo, A.-C.: On link discovery using a hybrid approach. J. Data Semantics 1(4), 203–217 (2012)
Ngonga Ngomo, A.-C., Auer, S.: LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data. In: IJCAI, pp. 2312–2317 (2011)
Nikolov, A., d’Aquin, M., Motta, E.: Unsupervised learning of link discovery configuration. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 119–133. Springer, Heidelberg (2012)
Nutanong, S., Jacox, E.H., Samet, H.: An incremental hausdorff distance calculation algorithm. Proc. VLDB Endow. 4(8), 506–517 (2011)
Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and interlink. In: Proc. IJCAI 2009 Workshop on Identity, Reference, and Knowledge Representation (IR-KR), Pasadena, CA, US (2009)
Tang, M., Lee, M., Kim, Y.J.: Interactive hausdorff distance computation for general polygonal models. ACM Trans. Graph. 28(3), 74:1–74:9 (2009)
Wang, J., Li, G., Feng, J.: Trie-join: Efficient trie-based string similarity joins with edit-distance constraints. PVLDB 3(1), 1219–1230 (2010)
Xiao, C., Wang, W., Lin, X.: Ed-Join: an efficient algorithm for similarity joins with edit distance constraints. PVLDB 1(1), 933–944 (2008)
Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection. In: WWW, pp. 131–140 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ngonga Ngomo, AC. (2013). ORCHID – Reduction-Ratio-Optimal Computation of Geo-spatial Distances for Link Discovery. In: Alani, H., et al. The Semantic Web – ISWC 2013. ISWC 2013. Lecture Notes in Computer Science, vol 8218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41335-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-41335-3_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41334-6
Online ISBN: 978-3-642-41335-3
eBook Packages: Computer ScienceComputer Science (R0)