An Improved Hardware Implementation of the Quark Hash Function

  • Shohreh Sharif MansouriEmail author
  • Elena Dubrova
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8262)


We present an implementation of U-Quark, the lightest instance of the Quark family of hash functions, which is optimized for throughput. The throughput is increased by converting the Feedback Shift Registers (FSRs) of Quarks permutation block from the original Fibonacci configuration to the Galois configuration. In this way, the complex feedback functions of the FSRs are decomposed into several simpler feedback functions. As a result, the throughput of U-Quark is increased by 34 % on average without any area penalty. The power consumption of the hash function also improves by 19 %.


Hash Function External Input Product Term Block Cipher Stream Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported in part the research grant No 621-2010-4388 from the Swedish Research Council and in part by the research grant No SM12-0005 from the Swedish Foundation for Strategic Research.


  1. 1.
    Aumasson, J.-P., Henzen, L., Meier, W., Naya-Plasencia, M.: quark: a lightweight hash. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 1–15. Springer, Heidelberg (2010)Google Scholar
  2. 2.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–1618, July 2006Google Scholar
  5. 5.
    Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-128 with optional authentication. Int. J. Wire. Mob. Comput. 5, 48–59 (2011)CrossRefGoogle Scholar
  6. 6.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)Google Scholar
  7. 7.
    Dubrova, E.: A transformation from the Fibonacci to the Galois NLFSRs. IEEE Trans. Inf. Theory 55(11), 5263–5271 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Mansouri, S.S., Dubrova, E.: An improved hardware implementation of the Grain-128a stream cipher. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 278–292. Springer, Heidelberg (2013)Google Scholar
  9. 9.
    Golomb, S.: Shift Register Sequences. Aegean Park Press, Laguna Hills (1982)Google Scholar
  10. 10.
    Mansouri, S., Dubrova, E.: An improved hardware implementation of the grain stream cipher. In: 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD), pp. 433–440, September 2010Google Scholar
  11. 11.
    Dubrova, E.: Finding matching initial states for equivalent NLFSRs in the Fibonacci to the Galois configurations. IEEE Trans. Inf. Theory 56(6), 2961–2967 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Chabloz, J.-M., Mansouri, S.S., Dubrova, E.: An algorithm for constructing a fastest Galois NLFSR generating a given sequence. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electronic SystemsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations