Dietary Recommendations for Lightweight Block Ciphers: Power, Energy and Area Analysis of Recently Developed Architectures

  • Lejla Batina
  • Amitabh Das
  • Barış EgeEmail author
  • Elif Bilge Kavun
  • Nele Mentens
  • Christof Paar
  • Ingrid Verbauwhede
  • Tolga Yalçın
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8262)


In this paper we perform a comprehensive area, power, and energy analysis of some of the most recently-developed lightweight block ciphers and we compare them to the standard AES algorithm. We do this for several different architectures of the considered block ciphers. Our evaluation method consists of estimating the pre-layout power consumption and the derived energy using Cadence Encounter RTL Compiler and ModelSIM simulations. We show that the area is not always correlated to the power and energy consumption, which is of importance for mobile battery-fed devices. As a result, this paper can be used to make a choice of architecture when the algorithm has already been fixed; or it can help deciding which algorithm to choose based on energy and key/block length requirements.



This work was supported in part by Technology Foundation STW, The Netherlands as STW project SIDES and by the Research Council KU Leuven: TENSE (GOA/11/007), by iMinds, by the Flemish Government, FWO G.0550.12N and by the Hercules Foundation AKUL/11/19.


  1. 1.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)Google Scholar
  3. 3.
    Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — a family of small and efficient hardware-oriented block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009)Google Scholar
  5. 5.
    Canright, D.: A very compact S-Box for AES. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 441–455. Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a Grain of sand. IEE Proc. Inf. Secur. 152(1), 13–20 (2005)CrossRefGoogle Scholar
  7. 7.
    Hein, D., Wolkerstorfer, J., Felber, N.: ECC is ready for RFID – a proof in silicon. In: Avanzi, R., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 401–413. Springer, Heidelberg (2009)Google Scholar
  8. 8.
    Hodjat, A., Verbauwhede, I.: The energy cost of embedded security for wireless sensor networks. In: Griffin, G., La Porta, T., Phoha, S. (eds.) Sensor Network Operations, pp. 510–522. Wiley, New York (2006)Google Scholar
  9. 9.
    Knezevic, M.: Efficient hardware implementations of cryptographic primitives. Ph.D. thesis, Katholieke Universiteit Leuven, Belgium, 208 pp (2011)Google Scholar
  10. 10.
    Lee, Y.K., Sakiyama, K., Batina, L., Verbauwhede, I.: Elliptic curve based security processor for RFID. IEEE Trans. Comput. 57(11), 1514–1527 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    de Meulenaer, G., Gosset, F., Standaert, F.-X., Pereira, O.: On the energy cost of communications and cryptography in wireless sensor networks (extended version). In: IEEE International Workshop on Security and Privacy in Wireless and Mobile Computing, Networking and Communications (SecPriWiMob ’08), October 2008, pp. 580–585. IEEE, New York (2008)Google Scholar
  12. 12.
    Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Patterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devices – security for 1000 gate equivalents. In: Grimaud, G., Standaert, F.-X. (eds.) CARDIS 2008. LNCS, vol. 5189, pp. 89–103. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Singelée, D., Seys, S., Batina, L., Verbauwhede, I.: The communication and computation cost of wireless security - extended abstract. In: Tsudik, G., Asokan, N. (eds.) Proceedings of the 4th ACM Conference on Wireless Network Security (WiSec ’11), pp. 1–3. ACM, New York (2011)CrossRefGoogle Scholar
  15. 15.
    Kerckhof, S., Durvaux, F., Hocquet, C., Bol, D., Standaert, F.-X.: Towards green cryptography: a comparison of lightweight ciphers from the energy viewpoint. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 390–407. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Borghoff, J., et al.: PRINCE – a low-latency block cipher for pervasive computing applications. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Tillich, S., Feldhofer, M., Popp, T., Großschädl, J.: Area, delay, and power characteristics of standard-cell implementations of the AES S-box. Sig. Process. Syst. 50(2), 251–261 (2008)CrossRefGoogle Scholar
  18. 18.
    Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer, Heidelberg (2012)Google Scholar
  19. 19.
    Hämäläinen, P., Alho, T., Hännikäinen, M., Hämäläinen, T.D.: Design and implementation of low-area and low-power AES encryption hardware core. In: Proceedings of the 9th EUROMICRO Conference on Digital System Design (DSD’06), pp. 577–583 (2006)Google Scholar
  20. 20.
    Shirai, T., Shibutani, K., Akishita, T., Moriai, S., Iwata, T.: The 128-Bit blockcipher CLEFIA (Extended Abstract). In: Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 181–195. Springer, Heidelberg (2007)Google Scholar
  21. 21.
    Hong, D., et al.: HIGHT: a new block cipher suitable for low-resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Lim, C.H., Korkishko, T.: mCrypton – a lightweight block cipher for security of low-cost RFID tags and sensors. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 243–258. Springer, Heidelberg (2006)Google Scholar
  23. 23.
    Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Dworkin, M.: NIST Recommendation for Block Cipher Modes of Operation, Methods and Techniques. NIST Special Publication 800-38A (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lejla Batina
    • 1
    • 2
  • Amitabh Das
    • 2
  • Barış Ege
    • 1
    Email author
  • Elif Bilge Kavun
    • 3
  • Nele Mentens
    • 2
    • 4
  • Christof Paar
    • 3
  • Ingrid Verbauwhede
    • 2
  • Tolga Yalçın
    • 3
  1. 1.Institute for Computing and Information SciencesRadboud University NijmegenNijmegenThe Netherlands
  2. 2.ESAT/COSICKU Leuven and iMindsLeuvenBelgium
  3. 3.Horst Görtz Institute for IT-SecurityRuhr University BochumBochumGermany
  4. 4.ACRO/ES&SKatholieke Hogeschool LimburgDiepenbeekBelgium

Personalised recommendations