Deploying OSK on Low-Resource Mobile Devices

  • Gildas Avoine
  • Muhammed Ali BingölEmail author
  • Xavier Carpent
  • Süleyman Kardaş
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8262)


It is a popular challenge to design authentication protocols that are both privacy-friendly and scalable. A large body of literature in RFID is dedicated to that goal, and many inventive mechanisms have been suggested to achieve it. However, to the best of our knowledge, none of these protocols have been tested so far in practical scenarios. In this paper, we present an implementation of the OSK protocol, a scalable and privacy-friendly authentication protocol, using a variant by Avoine and Oechslin that accommodates it to time-memory trade-offs. We show that the OSK protocol is suited to certain real-life scenarios, in particular when the authentication is performed by low-resource mobile devices. The implementation, done on an NFC-compliant cellphone and a ZC7.5 contactless tag, demonstrates the practicability and efficiency of the OSK protocol and illustrates that privacy-by-design is achievable in constrained environments.


RFID authentication Implementation Time-memory trade offs Privacy 



This work is partially funded by the Walloon Region Marshall plan through the SPW DG06 Project TRASILUX.


  1. 1.
    Avoine, G., Bingöl, M.A., Carpent, X., Ors Yalcin, S.B.: Privacy-friendly authentication in RFID systems: on sub-linear protocols based on symmetric-key cryptography. IEEE Trans. Mob. Comput. 12, 2037–2049 (2013)CrossRefGoogle Scholar
  2. 2.
    Avoine, G., Coisel, I., Martin, T.: Time measurement threatens privacy-friendly RFID authentication protocols. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 138–157. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Avoine, G., Dysli, E., Oechslin, P.: Reducing time complexity in RFID systems. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 291–306. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur. 11, 17:1–17:22 (2008)CrossRefGoogle Scholar
  5. 5.
    Avoine, G., Oechslin, P.: A scalable and provably secure hash based RFID protocol. In: International Workshop on Pervasive Computing and Communication Security - PerSec 2005, Kauai Island, HI, USA, March 2005, pp. 110–114. IEEE Computer Society (2005)Google Scholar
  6. 6.
    Bingöl, M.A.: Security analysis of RFID authentication protocols based on symmetric cryptography and implementation of a forward private scheme. Master’s thesis, Istanbul Technical University, Istanbul, Turkey (2012)Google Scholar
  7. 7.
    Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 1–18. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Borst, J., Preneel, B., Vandewalle, J.: On the time-memory tradeoff between exhaustive key search and table precomputation. In: Proceeding of the 19th Symposium in Information Theory in the Benelux, WIC, Veldhoven, The Netherlands, pp. 111–118 (1998)Google Scholar
  10. 10.
    HID Global Corporation. HSPD-12 & FIPS 201 PIV II: How Government Standards Affect Physical Access Control. (2007)
  11. 11.
    Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES implementation on a grain of sand. IEE Proc.: Inf. Secur. 152(1), 13–20 (2005)CrossRefGoogle Scholar
  12. 12.
    Guilfoyle, T.: The zeitcontrol basiccard family. (2009)
  13. 13.
    Hellman, M.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory 26(4), 401–406 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    International Organization for Standardization. ISO/IEC 9798: Information technology - Security techniques - Entity authentication - Part 2: Mechanisms using symmetric encipherment algorithms (1999)Google Scholar
  15. 15.
    Juels, A., Weis, S.: Defining strong privacy for RFID. In: International Conference on Pervasive Computing and Communications - PerCom 2007, March 2007, pp. 342–347. IEEE Computer Society, New York (2007)Google Scholar
  16. 16.
    Kardaş, S., Levi, A., Murat, E.: Providing resistance against server information leakage in RFID systems. In: New Technologies, Mobility and Security - NTMS’11, Paris, France, February 2011, pp. 1–7. IEEE Computer Society (2011)Google Scholar
  17. 17.
    LG Optimus 4X HD P880. Technical Specifications. (2013)
  18. 18.
    Lim, C.H., Kwon, T.: Strong and robust RFID authentication enabling perfect ownership transfer. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 1–20. Springer, Heidelberg (2006)Google Scholar
  19. 19.
    Matyas, S.M., Meyer, C.H., Oseas, J.: Generating strong one-way functions with cryptographic algorithm. IBM Tech. Discl. Bull. 27(10A), 5658–5659 (1985)Google Scholar
  20. 20.
    Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to privacy-friendly tags. In: RFID Privacy Workshop. MIT, Cambridge (2003)Google Scholar
  21. 21.
    Phan, R.C.-W., Wu, J., Ouafi, K., Stinson, D.R.: Privacy analysis of forward and backward untraceable rfid authentication schemes. Wirel. Pers. Commun. 61(1), 69–81 (2011)CrossRefGoogle Scholar
  22. 22.
    Shankland, S.: Google’s Android parts ways with Java industry group. CNET News (November 12, 2007). Accessed 15 Feb 2012Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gildas Avoine
    • 1
  • Muhammed Ali Bingöl
    • 2
    • 3
    Email author
  • Xavier Carpent
    • 1
  • Süleyman Kardaş
    • 2
    • 3
  1. 1.ICTEAM InstituteUniversité Catholique de LouvainLouvain la NeuveBelgium
  3. 3.Faculty of Engineering and Natural SciencesSabancı UniversityİstanbulTurkey

Personalised recommendations