Skip to main content

Electron momentum spectroscopy of metal carbonyls: a reinvestigation of the role of nuclear dynamics

  • Regular Article
  • Chapter
  • First Online:
Theoretical Chemistry in Belgium

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 6))

Abstract

The main purpose of this work is to reinvestigate the influence of nuclear dynamics in the electronic ground state of group 6 metal hexacarbonyl compounds [W(CO)6, Cr(CO)6, Mo(CO)6] on electron momentum density profiles obtained from experimental orbital reconstructions employing Electron Momentum Spectroscopy. We call into question the view (Liu et al. in Chem Phys Lett 497:229, 2010) that thermally induced nuclear displacements associated with the first three triply degenerate 1T2g, 1T1u, and 1T2u vibrational eigenmodes can be large enough at or near room temperature (298–310 K) to explain on their own the unexpectedly large electron densities inferred for the frontier orbitals of these compounds at low momenta. In this purpose, we resort to an analysis of populations over these three vibrational eigenmodes, according to a description of vibrational excitations employing Maxwell– Boltzmann statistical thermodynamics. Comparison is made with Born–Oppenheimer Molecular Dynamical (BOMD) simulations over the potential energy surface associated with the electronic ground state. The role of nuclear dynamics in the final ionized state, in the form of Jahn–Teller distortions, is also tentatively investigated.

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCarthy IE, Weigold E (1991) Rep Prog Phys 54:789

    Article  CAS  Google Scholar 

  2. Coplan MA, Moore JH, Doering JP (1994) Rev Mod Phys 66:985

    Article  CAS  Google Scholar 

  3. Weigold E, McCarthy IE (1999) Electron Momentum Spectroscopy. Kluwer, New York

    Book  Google Scholar 

  4. Neudatchin VG, Popov YV, Smirnov YF (1999) Physics-Uspehki 42:1017

    Article  CAS  Google Scholar 

  5. Pang WN, Gao JF, Ruan CJ, Shang RC, Trofimov AB, Deleuze MS (2000) J Chem Phys 112:8043

    Article  CAS  Google Scholar 

  6. Stia CR, Fojon OA, Weck PF, Hanssen J, Joulakian B, Rivarola RD (2002) Phys Rev A 66:052709

    Article  Google Scholar 

  7. Champion C, Cappello CD, Houamer S, Mansouri A (2006) Phys Rev A 73:012717

    Article  Google Scholar 

  8. Pickup BT (1977) Chem Phys 19:193

    Article  CAS  Google Scholar 

  9. Öhrn Y (1981) Adv Quantum Chem 13:1

    Article  Google Scholar 

  10. Deleuze M, Pickup BT, Delhalle J (1994) Mol Phys 83:655

    Article  CAS  Google Scholar 

  11. Seabra GM, Kaplan IG, Zakrzewski VG, Ortiz JV (2004) J Chem Phys 121:4143

    Article  CAS  Google Scholar 

  12. Duffy P, Chong DP, Casida ME, Salahub DR (1994) Phys Rev A 50:4704

    Article  Google Scholar 

  13. Deleuze MS, Cederbaum LS (1997) Int J Quantum Chem 63:465

    Article  CAS  Google Scholar 

  14. Golod A, Deleuze MS, Cederbaum LS (1999) J Chem Phys 110:6014

    Article  CAS  Google Scholar 

  15. Ning CG, Ren XG, Deng JK, Su GL, Zhang SF, Knippenberg S, Deleuze MS (2006) Chem Phys Lett 421:52

    Article  CAS  Google Scholar 

  16. Ning CG, Hajgató B, Huang YR, Zhang SF, Liu K, Luo ZH, Knippenberg S, Deng JK, Deleuze MS (2008) Chem Phys 343:19

    Article  CAS  Google Scholar 

  17. Knippenberg S, Franc¸ois JP, Deleuze MS (2006) J Comp Chem 27:1703

    Google Scholar 

  18. Shojaei SHR, Hajgató B, Deleuze MS (2010) Chem Phys Lett 498:45

    Article  CAS  Google Scholar 

  19. Deleuze MS, Pang WN, Salam A, Shang RC (2001) J Am Chem Soc 123:4049

    Article  CAS  Google Scholar 

  20. Knippenberg S, Huang YR, Hajgató B, Franc¸ois JP, Deng JK, Deleuze MS (2007) J Chem Phys 127:174306

    Google Scholar 

  21. Morini F, Knippenberg S, Deleuze MS, Hajgató B (2010) J Phys Chem A 114:4400

    Article  CAS  Google Scholar 

  22. Hajgató B, Deleuze MS, Morini F (2009) J Phys Chem A 113:7138

    Article  Google Scholar 

  23. Takahashi M, Ogino R, Udagawa Y (1998) Chem Phys Lett 288:821

    Article  CAS  Google Scholar 

  24. Ehara M, Ohtsuka Y, Nakatsuji H, Takahashi M, Udagawa Y (2005) J Chem Phys 122:234319

    Article  Google Scholar 

  25. Deleuze MS, Knippenberg S (2006) J Chem Phys 125:104309

    Article  CAS  Google Scholar 

  26. Huang CW, Shan X, Zhang Z, Wang EL, Li ZJ, Chen XJ (2010) J Chem Phys 133:124303

    Article  Google Scholar 

  27. Brion CE, Zheng Y, Rolke J, Neville JJ, McCarthy IE, Wang J (1998) J Phys B 31:L223

    Article  CAS  Google Scholar 

  28. Takahashi M, Saito T, Hiraka J, Udagawa Y (2003) J Phys B 36:2539

    Article  CAS  Google Scholar 

  29. Nixon KL, Lawrance WD, Brunger MJ (2009) Chem Phys Lett 474:23

    Article  CAS  Google Scholar 

  30. Takahashi M, Khajuria Y, Udagawa Y (2003) Phys Rev A 68:042710

    Article  Google Scholar 

  31. Watanabe N, Takahashi M, Udagawa Y, Kouzakov KA, Popov YV (2007) Phys Rev A 75:052701

    Article  Google Scholar 

  32. Takahashi M, Miyake Y, Watanabe N, Udagawa Y, Sakai Y, Mukoyama T (2007) Phys Rev Lett 98:013201

    Article  CAS  Google Scholar 

  33. Ren XG, Ning CG, Deng JK, Zhang SF, Su GL, Huang F, Li GQ (2005) Phys Rev Lett 94:163201

    Article  CAS  Google Scholar 

  34. Knippenberg S, Deleuze MS, Cleij TJ, Franc¸ois JP, Cederbaum LS, Eland JHD (2005) J Phys Chem A 109:4267

    Google Scholar 

  35. Knippenberg S, Hajgató B, Franc¸ois JP, Deleuze MS (2007) J Phys Chem A 111:10834

    Google Scholar 

  36. Knippenberg S, Hajgató B (2012) Spectrochim Acta A 102:2012

    Google Scholar 

  37. Li ZJ, Chen XJ, Shan X, Liu T, Xu KZ (2009) J Chem Phys 130:054302

    Article  Google Scholar 

  38. Mingos DMP (1982) In: Wilkinson G (ed) Comprehensive organometallic chemistry, vol 3 of Comprehensive organometallic chemistry. Pergamon Press, New York

    Google Scholar 

  39. Huheey JE (1983) Inorganic chemistry: principles of structure and reactivity, 3rd edn. Harper International SI Edition, Cambridge

    Google Scholar 

  40. Cotton FA, Wilkinson G (1988) Advanced inorganic chemistry, 5th edn. Wiley-Interscience, New York

    Google Scholar 

  41. Schriver DF, Atkins PW (2006) Inorganic chemistry, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  42. Higginson BR, Lloyd DR, Burroughs P, Gibson DM, Orchard AF (1973) J Chem Soc Faraday Trans 2:69

    Google Scholar 

  43. Chornay DJ, Coplan MA, Tossell JA, Moore JR, Baerends EJ, Rozendaal A (1985) Inorg Chem 24:877

    Article  CAS  Google Scholar 

  44. Rolke J, Zheng Y, Brion CE, Chakravorty SJ, Davidson ER, McCarthy IE (1997) Chem Phys 215:191

    Article  CAS  Google Scholar 

  45. Liu K, Ning CG, Luo ZH, Shi LL, Deng JK (2010) Chem Phys Lett 497:229

    Article  CAS  Google Scholar 

  46. Brunger MJ, Braidwood SW, McCarthy IE, Weigold E (1994) J Phys B 27:L597

    Article  CAS  Google Scholar 

  47. Takahashi M, Udagawa Y (2004) J Electron Spectrosc Rel Phenom 137:187

    Google Scholar 

  48. Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory. Pergamon, Oxford

    Google Scholar 

  49. Nicholson RJF,McCarthy IE,WeyrichW(1999) J PhysB32:3873

    Google Scholar 

  50. Miyake Y, Takahashi M, Watanabe N, Khajuria Y, Udagawa Y, Sakai Y, Mukoyama T (2006) Phys Chem Chem Phys 8:3022

    Article  CAS  Google Scholar 

  51. Champion C, Hanssen J, Hervieux PA (2002) Phys Rev A 65:022710

    Article  Google Scholar 

  52. Builth-Williams JD, Bellm SM, Jones DB, Chaluvadi H, Madison DH, Ning CG, Lohmann B, Brunger MJ (2012) J Chem Phys 136:024304

    Article  CAS  Google Scholar 

  53. McQuarrie DA (2000) Statistical mechanics. University Science Books, Sausalito

    Google Scholar 

  54. Carter AH (2001) Classical and statistical thermodynamics. Prentice Hall, Upper Saddle River

    Google Scholar 

  55. Helgaker T, Uggerud E, Jensen HJA (1990) Chem Phys Lett 173:145

    Article  CAS  Google Scholar 

  56. Uggerud E, Helgaker T (1992) J Am Chem Soc 114:4265

    Article  CAS  Google Scholar 

  57. Bolton K, Hase WL, Peslherbe GH (1998) In: Thompson DL (ed) Modern methods for multidimensional dynamics computation in chemistry. World Scientific, Singapore, p 143

    Chapter  Google Scholar 

  58. Haile JMP (1997) Molecular dynamics simulation. Wiley, New York

    Google Scholar 

  59. Williams RW, Heilweil EJ (2010) Chem Phys 373:251

    Article  CAS  Google Scholar 

  60. Joalland B, Rapacioli M, Simon A, Joblin C, Mardsen CJ, Spiegelman F (2010) J Phys Chem A 114:5846

    Article  CAS  Google Scholar 

  61. Simon A, Rapacioli M, Lanza M, Joalland B, Spiegelman F (2011) Phys Chem Chem Phys 13:3359

    Article  CAS  Google Scholar 

  62. Ramírez-Solís A, Jolibois F, Maron L (2011) Chem Phys Lett 510:21

    Article  Google Scholar 

  63. Ning CG, Luo ZH, Huang YR, Hajgató B, Morini F, Liu K, Zhang SF, Deng JK, Deleuze MS (2008) J Phys B 41:175103

    Article  Google Scholar 

  64. Levin VG, Neudatchin VG, Pavlitchenkov AV, Smirnov YF (1975) J Chem Phys 63:1541

    Article  CAS  Google Scholar 

  65. Venkatesan TS, Mahapatra S, Cederbaum LS, Köppel H (2004) J Phys Chem A 108:2256

    Article  CAS  Google Scholar 

  66. Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59

    Article  Google Scholar 

  67. Deleuze MS, Hajgató B, Morini F, Knippenberg S (2010) J Phys Conf Ser 212:012020

    Article  Google Scholar 

  68. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  69. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  70. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  71. Chai JD, Head-GordonM(2008) Phys Chem Chem Phys 10:6615

    Google Scholar 

  72. Dunning TH Jr (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  73. Kendall RA, Dunning TH Jr, Harrison R (1992) J Chem Phys 96:6796

    Article  CAS  Google Scholar 

  74. Peterson K, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Article  Google Scholar 

  75. Figgen D, Peterson KA, Dolg M, Stoll H (2009) J Chem Phys 130:164108

    Article  Google Scholar 

  76. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  77. Odoh OS, Schreckenbach G (2010) J Phys Chem A 114:1957

    Article  CAS  Google Scholar 

  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, MillamJM, Klene M, Knox JE, Cross JB, Bakken CV, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision B.1. Gaussian, Inc., Wallingford

    Google Scholar 

  79. Ren XG, Ning CG, Deng JK, Zhang SF, Su GL, Huang F, Li GQ (2005) Rev Sci Instrum 76:063103

    Article  Google Scholar 

  80. Casida ME (1995) Phys Rev A 51:2005

    Article  CAS  Google Scholar 

  81. Gritsenko OV, Braïda B, Baerends EJ (2003) J Chem Phys 119:1937

    Article  CAS  Google Scholar 

  82. Janak JF (1978) Phys Rev B 18:7165

    Article  CAS  Google Scholar 

  83. Vanfleteren D, Van Neck D, Ayers PW, Morrison RC, Bultinck P (2009) J Chem Phys 130:194104

    Article  Google Scholar 

  84. Bawagan AO (1987) Ph.D. Thesis, University of British Columbia (UBC). See various contributions to the original HEMS program as recorded by Bawagan. The HEMS (now known as MOMAP) program has been extensively revised and extended at UBC by Cann NM and Cooper G

    Google Scholar 

  85. Duffy P, Casida ME, Brion CE, Chong DP (1992) Chem Phys 159(b):347

    Google Scholar 

  86. Bawagan AO, Brion CE (1990) Chem Phys 144:167

    Article  CAS  Google Scholar 

  87. Bulirsch R, Stoer J (1991) Introduction to numerical analysis. Springer, New York

    Google Scholar 

  88. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Richardson extrapolation and the Bulirsch-Stoer method. In: Numerical recipes in FORTRAN: the art of scientific computing. Cambridge University Press, Cambridge, 2nd edn., pp 718–725

    Google Scholar 

  89. Schaftenaar G, Noordik JH (2000) J Comput-Aided Mol Des 14:123

    Article  CAS  Google Scholar 

  90. Vanlenthe E, Baerends E, Snijders J (1994) J Chem Phys 101:9783

    Article  CAS  Google Scholar 

  91. Ehlers AW, Frenking G (1993) J Chem Soc Chem Commun 1709

    Google Scholar 

  92. Jonas V, Frenking G, Reetz MT (1992) J Comput Chem 13:919

    Article  CAS  Google Scholar 

  93. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  94. Hehre WJ, Ditchfield R, Pople PA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  95. Shimanouchi T, Molecular vibrational frequencies. In: Lingstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, http://webbook.nist.gov

    Google Scholar 

  96. Shimanouchi T (1972) J Phys Chem Ref Data 6:993

    Article  Google Scholar 

  97. Bérces A (1996) J Phys Chem A 100:16538

    Article  Google Scholar 

  98. Mortimer RG (2003) Physical Chemistry, 3rd edn. Elsevier, London

    Google Scholar 

  99. Mc Quarrie DA, Simons JD (1997) Physical chemistry—a molecular approach. University Science Books, Sausalito

    Google Scholar 

  100. Atkins P, de Paula J (2010) Physical Chemistry, 9th edn. W. H. Freeman, New York

    Google Scholar 

  101. Herzberg G (1956) Molecular spectra and molecular structure; Part II. Infrared and Raman Spectra of Polyatomic Molecules, 07th Printing. D. Van Nostrand Company, Princeton

    Google Scholar 

  102. Takahashi M (2010) Oral remark at the international conference on many-particle spectroscopy of atoms, molecules, clusters, and surfaces; (MPS2012), held in Sendai. Japan, Sendai, 4–7 September 2010

    Google Scholar 

  103. Brauner M, Briggs JS, Klar J (1989) J Phys B 22:2265

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Deleuze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hajgató, B., Morini, F., Deleuze, M.S. (2014). Electron momentum spectroscopy of metal carbonyls: a reinvestigation of the role of nuclear dynamics. In: Champagne, B., Deleuze, M., De Proft, F., Leyssens, T. (eds) Theoretical Chemistry in Belgium. Highlights in Theoretical Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41315-5_9

Download citation

Publish with us

Policies and ethics