Skip to main content

Laser control in open quantum systems: preliminary analysis toward the Cope rearrangement control in methyl-cyclopentadienylcarboxylate dimer

  • Regular Article
  • Chapter
  • First Online:
Theoretical Chemistry in Belgium

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 6))

  • 1045 Accesses

Abstract

We present a preliminary simulation toward the control of theCope rearrangement of themost stable isomer of methyl-cyclopentadienylcarboxylate dimer. An experimental investigation of the dimerization of methyl-cyclopentadienylcarboxylate has been carried out. It shows that the most stable isomer of the dimer, the Thiele’s ester, is the major product of the dimerization. The simulation takes it as the initial state for the further control of the Cope reaction. The aim of the simulation is to examine the possibility of laser control to form the target product, not detected during the dimerization. The relevant stationary states have been characterized at the DFT B3LYP level, particularly the Cope transition state in which the dimer is connected only by a single bond r1. A minimum energy potential surface has been computed in a two-dimensional subspace of two bounds r2 and r3 which achieve the dimerization and have a very high weight in the reaction path from the Cope TS to the two adducts. Quantum wave packet optimal control simulation has been studied in a one-dimensionalmodel using an active coordinate r_= r3 - r2 which nearly corresponds to the reaction path. The stability of the optimal field against dissipation is examined by a non-Markovian master equation approach, which is perturbative in the system-bath coupling but without limitation on the strength of the field.

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium.

Electronic supplementary materialThe online version of this article (doi:10.1007/s00214-012-1236-5) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brif C, Chakrabarti R, Rabitz H (2010) New J Phys 12:075008–075068

    Article  Google Scholar 

  2. Korolkov MV, Manz J, Paramonov GK (1996) J Chem Phys 105:10874–10889

    Article  CAS  Google Scholar 

  3. Došlić N, Sundermann K, González L, Mó O, Giraud-Girard J, Kühn O (1999) Phys Chem Chem Phys 1:1247–1257

    Google Scholar 

  4. Kühn O (2002) J Phys Chem A 106:7671–7679

    Article  Google Scholar 

  5. Hoki K, Ohtsuki Y, Fujimura Y (2001) J Chem Phys 114:1575–1581

    Article  CAS  Google Scholar 

  6. Vogt G, Krampert G, Niklaus P, Nuemberger P, Gerber G (2005) Phys Rev Lett 94:068305-4

    Article  CAS  Google Scholar 

  7. Hoki K, Brumer P (2005) Phys Rev Lett 95:168305-4

    Article  Google Scholar 

  8. Vogt G, Nuernberger P, Brixner T, Gerger G (2006) Chem Phys Lett 433:211–215

    Article  CAS  Google Scholar 

  9. Kotur M, Weinacht T, Pearson BJ, Matsika S (2009) J Chem Phys 130:134311-5

    Article  Google Scholar 

  10. Mitrić R, Petersen J, Bonačić-Kouteckỳ V (2009) Phys Rev A 79:053416-6

    Article  Google Scholar 

  11. Prokhorenko VI, Halpin A, Johnson PJM, Dwayne Miller RJ, Brown LS (2011) J Chem Phys 134:085105-10

    Article  Google Scholar 

  12. Sha SP, Rice SA (2000) J Chem Phys 113:6536–6541

    Article  Google Scholar 

  13. Gong J, Ma A, Rice SA (2005) J Chem Phys 122:204505-5

    Article  Google Scholar 

  14. Zhang M, Gong J, Ma A, Rice SA (2007) J Chem Phys 127:144501-9

    Article  Google Scholar 

  15. Artamonov M, Ho T-S, Rabitz H (2006) J Chem Phys 124:064306-10

    Article  Google Scholar 

  16. Artamonov M, Ho T-S, Rabitz H (2006) Chem Phys 328:147–155

    Article  CAS  Google Scholar 

  17. Sugny D, Kontz C, Ndong M, Justum Y, Dive G, Desouter- Lecomte M (2006) Phys Rev A 74:043419-14

    Article  Google Scholar 

  18. Gräfe S, Meier C, Engel V (2007) J Chem Phys 122:184103-8

    Article  Google Scholar 

  19. Cheng T, Darmawan H, Brown A (2007) Phys Rev A 75:013411-11

    Article  Google Scholar 

  20. Kondorskiy A, Nakamura H (2008) Phys Rev A 77:043407-8

    Article  Google Scholar 

  21. Kurosaki Y, Artamonov M, Ho T-S, Rabitz H (2009) J Chem Phys 131:044306-8

    Article  Google Scholar 

  22. Lasorne B, Dive G, Desouter-Lecomte M (2005) J Chem Phys 122:184304-10

    Article  CAS  Google Scholar 

  23. Marchand A, Zhao D, Ngooi T, Vidyasagar V (1993) Tetrahedron 49:2613–2620

    Article  CAS  Google Scholar 

  24. Zhu W, Botina J, Rabitz H (1998) J Chem Phys 108:1953–1963

    Article  CAS  Google Scholar 

  25. Garg A, Ohnuchic JN, Ambegaokar V (1985) J Chem Phys 83:4491–4503

    Article  CAS  Google Scholar 

  26. Westermann T, Brodbeck R, Rozhenko AB, Shoeller W, Manthe U (2011) J Chem Phys 135:184102-12

    Article  Google Scholar 

  27. Yan Y, Xu R (2005) Annu Rev Phys Chem 56:187–219

    Article  CAS  Google Scholar 

  28. Meier C, Tannor DJ (1999) J Chem Phys 111:3365–3376

    Article  CAS  Google Scholar 

  29. Keinekatho¨fer U (2004) J Chem Phys 121:2505–2514

    Google Scholar 

  30. Pomyalov A, Meier C, Tannor DJ (2010) Chem Phys 370:98–108

    Article  CAS  Google Scholar 

  31. Spino C, Pesant M, Dory Y (1998) Angew Chem Int Ed 37:3262–3265

    Article  CAS  Google Scholar 

  32. Thiele J (1901) Ber 34:68

    Google Scholar 

  33. Peters D (1959) J Chem Soc 1761–1765

    Google Scholar 

  34. Dunn GL, Donohue JK (1968) Tet Lett 31:3485–3487

    Article  Google Scholar 

  35. Rippert AJ, Hansen H-J (1995) Helv Chem Acta 78:238–241

    Article  CAS  Google Scholar 

  36. Minter DE, Marchand AP, Lu S (1990) Magn Reson Chem 28:623–627

    Article  CAS  Google Scholar 

  37. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  39. Francl MM, Pietro WJ, Hehre W, Binkley J, DeFrees D, Pople JA, Gordon M (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  40. SAS 9.1 licenced to University of Liége; copyright (c) 2002–2003 by SAS Institute Inc., Cary, NC, USA

    Google Scholar 

  41. Ohtsuki Y (2001) J Chem Phys 119:661–671

    Article  Google Scholar 

  42. Xu R, Yan Y, Ohtsuki Y, Fujimura Y, Rabitz H (2004) J Chem Phys 120:6600–6608

    Article  CAS  Google Scholar 

  43. Breuer H-P, Petruccione F (2003) The theory of open quantum systems. Wiley, New-York

    Google Scholar 

  44. Feit MD, Fleck JA, Steiger A (1982) J Comput Phys 47:412–433

    Article  CAS  Google Scholar 

  45. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical Recipes. Cambridge University Press, Cambridge

    Google Scholar 

  46. Palao JP, Kosloff R (2002) Phys Rev Lett 89:188301-4

    Article  Google Scholar 

  47. Sugawara M, Fujimura Y (1994) J Chem Phys 100:5646–5655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Desouter-Lecomte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dive, G., Robiette, R., Chenel, A., Ndong, M., Meier, C., Desouter-Lecomte, M. (2014). Laser control in open quantum systems: preliminary analysis toward the Cope rearrangement control in methyl-cyclopentadienylcarboxylate dimer. In: Champagne, B., Deleuze, M., De Proft, F., Leyssens, T. (eds) Theoretical Chemistry in Belgium. Highlights in Theoretical Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41315-5_5

Download citation

Publish with us

Policies and ethics