Ewald-type formulas for Gaussian-basis studies of one-dimensionally periodic systems

Regular Article
Part of the Highlights in Theoretical Chemistry book series (HITC, volume 6)

Abstract

The history of computations at Namur and elsewhere on the electronic structures of stereoregular polymers is briefly reviewed to place the work reported here in the context of related efforts. Our earlier publications described methods for the formal inclusion of Ewald-type convergence acceleration in band-structure computations based on Gaussian-type orbitals, and that work is here extended to include a discussion of the calculation of total energies. It is noted that the continuous nature of the electronic density leads to different functional forms than are encountered for point-charge lattice sums. Examples are provided to document the correctness and convergence properties of the formulation.

Keywords

Total energy Stereoregular polymers Ewald method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    André JM, Moseley DH, Champagne B, Delhalle J, Fripiat JG, Brédas JL, Vanderveken DJ, Vercauteren DP (1993) Methods and techniques in computational chemistry: METECC-94. In: Clementi E (eds) STEF, Cagliari, pp 423–480Google Scholar
  2. 2.
    Ewald PP (1921) Ann Phys Leipzig 64:253CrossRefGoogle Scholar
  3. 3.
    Flamant I (1998) Fourier space restricted Hartree-Fock method for the electronic structure calculation of stereoregular polymers. Ph.D. dissertation, Facultés Universitaires Notre-Dame de la PaixGoogle Scholar
  4. 4.
    Flamant I, Fripiat JG, Delhalle J, Harris FE (2000) Theor Chem Acc 104:350CrossRefGoogle Scholar
  5. 5.
    Ambrosiano J, Greengard L, Rokhlin V (1988) Comput Phys Commun 48:117CrossRefGoogle Scholar
  6. 6.
    Lambert CG, Darden TA, Board JA Jr. (1996) J Comput Phys 126:274CrossRefGoogle Scholar
  7. 7.
    Strain MC, Scuseria GE, Frisch MJ (1996) Science 271:51CrossRefGoogle Scholar
  8. 8.
    Pisani C, Dovesi R, Roetti C, Causá M, Orlando R, Casassa S, Saunders VR (2000) Int J Quantum Chem 77:1032CrossRefGoogle Scholar
  9. 9.
    Saunders VR, Freyria-Fava C, Dovesi R, Roetti C (1994) Comput Phys Commun 84:156CrossRefGoogle Scholar
  10. 10.
    Fripiat JG, Delhalle J, Flamant I, Harris FE (2010) J Chem Phys 132:044108CrossRefGoogle Scholar
  11. 11.
    Terras R (1991) J Comput Phys 39:233CrossRefGoogle Scholar
  12. 12.
    Harris FE (2008) J Comput Appl Math 215:260CrossRefGoogle Scholar
  13. 13.
    Harris FE, Fripiat JG (2009) Int J Quantum Chem 109:1728CrossRefGoogle Scholar
  14. 14.
    Abramowitz, M, Stegun, I (eds) (1964)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Chimie Théorique, Unité de chimie physique théorique et structuraleFUNDP–University of NamurNamurBelgium
  2. 2.Department of PhysicsUniversity of UtahSalt Lake CityUSA
  3. 3.Quantum Theory ProjectUniversity of FloridaGainesvilleUSA

Personalised recommendations