Skip to main content

Partial Approximation of Multisets and Its Applications in Membrane Computing

  • Conference paper
Rough Sets and Knowledge Technology (RSKT 2013)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8171))

Included in the following conference series:

Abstract

Partial nature of real–life problems requires working out partial approximation schemes. Partial approximation of sets is based on classical set theory. Its generalization for multisets gives a plausible opportunity to introduce an abstract concept of “to be close enough to a membrane” in membrane computing. The paper presents important features of general (maybe partial) multiset approximation spaces, their lattice theory properties, and shows how partial multiset approximation spaces can be applied to membrane computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  3. Girish, K.P., John, S.J.: Relations and functions in multiset context. Information Sciences 179(6), 758–768 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Grzymala-Busse, J.: Learning from examples based on rough multisets. In: Proceedings of the Second International Symposium on Methodologies for Intelligent Systems, pp. 325–332. North-Holland Publishing Co., Amsterdam (1987)

    Google Scholar 

  5. Csajbók, Z.E.: Approximation of sets based on partial covering. In: Peters, J.F., Skowron, A., Ramanna, S., Suraj, Z., Wang, X. (eds.) Transactions on Rough Sets XVI. LNCS, vol. 7736, pp. 144–220. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: A generalization of the rough set theory. International Journal of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)

    Google Scholar 

  7. Mihálydeák, T., Csajbók, Z.: Membranes with local environments. In: Csuhaj-Varjú, E., Gheorghe, M., Vaszil, G. (eds.) Proceedings of the 13th International Conference on Membrane Computing, CMC13, Budapest, Hungary, August 28-31, pp. 311–322. MTA SZTAKI, The Computer and Automation Research Institute of the Hungarian Academy of Sciences (2012)

    Google Scholar 

  8. Mihálydeák, T., Csajbók, Z.E.: Membranes with boundaries. In: Csuhaj-Varjú, E., Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS, vol. 7762, pp. 277–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  11. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford Handbooks. Oxford University Press, Inc., New York (2010)

    MATH  Google Scholar 

  12. Birkhoff, G.: Lattice theory, 3rd edn. Colloquium Publications, vol. 25. American Mathematical Society, Providence (1967)

    Google Scholar 

  13. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  14. Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel und Stuttgart (1978)

    Google Scholar 

  15. Kudlek, M., Martín-Vide, C., Păun, G.: Toward a formal macroset theory. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 123–134. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mihálydeák, T., Csajbók, Z.E. (2013). Partial Approximation of Multisets and Its Applications in Membrane Computing. In: Lingras, P., Wolski, M., Cornelis, C., Mitra, S., Wasilewski, P. (eds) Rough Sets and Knowledge Technology. RSKT 2013. Lecture Notes in Computer Science(), vol 8171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41299-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41299-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41298-1

  • Online ISBN: 978-3-642-41299-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics