Skip to main content

Biological Network Modeling and Analysis

  • Chapter
  • First Online:
Book cover Approaches in Integrative Bioinformatics

Abstract

Each scientist needs to be aware of the complexity of cellular life and the modeling possibilities to be able to reconstruct, analyze, and simulate biological systems. Bioinformatics modeling, analysis, and simulation are highly interdisciplinary disciplines using techniques and concepts from computer science, statistics, mathematics, chemistry, biology, biochemistry, genetics, and physics, among others. Without knowledge about these research topics, it is almost impossible to produce good theoretical models, which can be used for hypothesis testing. Therefore, this chapter gives an impression of what can be modeled from the bioinformatics and biological point of view and introduces into biological networks, common analysis techniques from graph theory, and possibilities to reconstruct, simulate, and share biological networks based on database content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The number of software applications has been approximated by counting software tools that support SBML and CellML. Software tools are listed at http://www.sbml.org/ and http://www.cellml.org/

  2. 2.

    http://sbml.org/

References

  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2007) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  2. Eigen M (1971) Self organization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465–523

    Google Scholar 

  3. Schrödinger E (1955) What is life? The physical aspect of the living cell. The University Press, Cambridge, pp 1–12

    Google Scholar 

  4. Dronamraju KR, Schrödinger E (1999) Erwin Schrödinger and the origins of molecular biology. Genetics 153(3):1071–1076

    Google Scholar 

  5. Holum JR (1998) Fundamentals of general, organic, and biological chemistry, 6th edn. Wiley, New York

    Google Scholar 

  6. Crick FHC (1958) Ideas on protein synthesis. Symp Soc Exp Biol XII:1–2

    Google Scholar 

  7. Crick FHC (1970) Central dogma of molecular biology. Nature 227(5258):561–563

    Google Scholar 

  8. Alon U (2006) An introduction to systems biology: design principles of biological circuits. Simplicity in biology, 1st edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  9. Junker BH, Schreiber F (2011) Analysis of biological networks, 1st edn. Wiley-Interscience, Hoboken

    Google Scholar 

  10. De Las Rivas J, Fontanillo C (2010) Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput Biol 6(6):1–8

    Google Scholar 

  11. Waksman G (2005) Proteomics and protein-protein interactions. Volume 3 of biology, chemistry, bioinformatics, and drug design. Springer, New York, pp 50–89

    Google Scholar 

  12. Panchenko A, Przytycka T (2008) Protein-protein interactions and networks. Identification, computer analysis, and prediction, 1st edn. Springer, New York Incorporated, pp 1–53

    Google Scholar 

  13. Suthram S (2008) Dissertation: understanding cellular function through the analysis of protein interaction networks. ProQuest, University of California, San Diego, 191p

    Google Scholar 

  14. Kepes F (2007) Biological networks, 1st edn. World Scientific, Singapore

    Google Scholar 

  15. Zhang A (2009) Protein interaction networks: computational analysis, 1st edn. Cambridge University Press, Cambridge/New York, pp. 1–62

    Google Scholar 

  16. Klussmann E, Scott J, Aandahl EM (2008) Protein-protein interactions as new drug targets, 1st edn. Springer, Berlin

    Google Scholar 

  17. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein-protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    Google Scholar 

  18. Altman A (2002) Signal transduction pathways in autoimmunity, vol 5. Karger, Basel/New York

    Google Scholar 

  19. Cheong R, Hoffmann A, Levchenko A (2008) Understanding NF-kappaB signaling via mathematical modeling. Mol Syst Biol 4:192–196

    Google Scholar 

  20. Kearns JD (2006) IκB provides negative feedback to control NF-κB oscillations, signaling dynamics, and inflammatory gene expression. J Cell Biol 173(5):659–664

    Google Scholar 

  21. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40(Database Issue):109–114

    Google Scholar 

  22. Keseler IM, Bonavides-Martinez C, Collado-Vides J, Gama-Castro S, Gunsalus RP, Johnson DA, Krummenacker M, Nolan LM, Paley S, Paulsen IT, Peralta-Gil M, Santos-Zavaleta A, Shearer AG, Karp PD (2009) EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37(Database Issue):464–470

    Google Scholar 

  23. Karp PD, Ouzounis CA, Moore-Kochlacs C, Goldovsky L, Kaipa P, Ahrén D, Tsoka S, Darzentas N, Kunin V, López-Bigas N (2005) Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res 33(19):6083–6089

    Google Scholar 

  24. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558

    MathSciNet  Google Scholar 

  25. Van Pelt J, Kamermans U, Levelt CN (2004) Development, dynamics and pathology of neuronal networks: from molecules to functional circuits. Elsevier Science and Technology, Amsterdam/Boston

    Google Scholar 

  26. Kunin V, Goldovsky L, Darzentas N, Ouzounis CA (2005) The net of life: reconstructing the microbial phylogenetic network. Genome Res 15(7):954–959

    Google Scholar 

  27. Gray SH (2008) Food webs: interconnecting food chains. Exploring science. Compass Point Books, Minneapolis, pp 1–48

    Google Scholar 

  28. De Ruiter PC, Wolters V, Moore JC (2005) Dynamic food webs. Multispecies assemblages, ecosystem development, and environmental change. Academic, Amsterdam/Boston, pp 3–10

    Google Scholar 

  29. Pimm SL (2002) Food webs. University of Chicago Press, Chicago, pp 1–34

    Google Scholar 

  30. Hoppensteadt FC (1982) Mathematical methods of population biology. Cambridge University Press, Cambridge/New York, pp 1–28

    MATH  Google Scholar 

  31. Diestel R (2000) Graphentheorie, vol 2. Springer, Berlin, pp 1–25

    Google Scholar 

  32. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J, Schneider R, Bagos PG (2011) Using graph theory to analyze biological networks. BioData Min 4:10

    Google Scholar 

  33. Koschützki D, Lehmann KA, Peeters L, Richter S, Tenfelde-Podehl D, Zlotowski O (2005) Network analysis: centrality indices. Lecture notes in computer science, vol 3418. Springer, Berlin, Heidelberg

    Google Scholar 

  34. Jeong H, Mason SP, Barabási A, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41–42

    Google Scholar 

  35. Hahn MW, Kern AD (2005) Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 22(4):803–806

    Google Scholar 

  36. Hage P, Harary F (1995) Eccentricity and centrality in networks. Soc Netw 17:57–63

    Google Scholar 

  37. Sabidussi G (1966) The centrality index of a graph. Psychometrika 31(4):581–603

    MATH  MathSciNet  Google Scholar 

  38. Freeman LC (1977) A set of measures of centrality based on betweenness. Sociometry 40:35–41

    Google Scholar 

  39. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2:113–120

    Google Scholar 

  40. Lewinski M (2012) Mathematischer Netzwerkvergleich anhand multipler Netzwerk Charakteristika. Master thesis at the Bielefeld University, pp 58–70

    Google Scholar 

  41. Stein ML, Stein PR (1967) Enumeration of linear graphs and connected linear graphs up to p = 18 Points. Report LA-3775, Los Alamos Scientific Laboratory of the University of California

    Google Scholar 

  42. van den Berg H (2011) Mathematical models of biological systems (Oxford biology), 1st edn. Oxford University Press, Oxford

    Google Scholar 

  43. Tyson J, Chen KC, Novak B (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15(2):221–231

    Google Scholar 

  44. Gizzatkulov M, Goryanin I, Metelkin EA, Mogilevskaya EA, Peskov KV, Demin OV (2010) DBSolve Optimum: a software package for kinetic modeling which allows dynamic visualization of simulation results. BMC Syst Biol 4:109

    Google Scholar 

  45. Demin O, Goryanin I (2008) Kinetic modelling in systems biology. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  46. Rumbaugh J, Eddy F (1991) Object-oriented modeling and design. Prentice-Hall, Englewood Cliffs, pp 15–57

    Google Scholar 

  47. Johnson CG, Goldman JP, William JG (2004) Simulating complex intracellular processes using object-oriented computational modelling. Prog Biophys Mol Biol 86(3):379–406

    Google Scholar 

  48. Francesca C, Daniele M, Marco G (2009) Modeling biological pathways: an object-oriented like methodology based on mean field analysis. Trans IRE 1:117–122

    Google Scholar 

  49. Dorkeld F, Perrière G, Gautier C (1993) Object-oriented modelling in molecular biology. In: Ganascia JG (ed) Proceedings of the artificial intelligence and genome workshop, IJCAI, pp 99–106

    Google Scholar 

  50. Lee M, Starr LLJ (1994) Object-oriented analysis in the real-world. Embed Syst Program 7(6):24–37

    Google Scholar 

  51. Kurth W (2007) Specification of morphological models with L-systems and relational growth grammars. J Interdiscip Image Sci 5:1–25

    Google Scholar 

  52. Prusinkiewicz P, Lindenmayer A (1990) The algorithmic beauty of plants. Springer, New York, pp 1–46

    MATH  Google Scholar 

  53. Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:1–9

    Google Scholar 

  54. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. Curr Opin Biotechnol 14(5):491–496

    Google Scholar 

  55. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3(3):195–206

    Google Scholar 

  56. Efroni S, Harel D, Cohen IR (2003) Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation. Genome Res 13(11):2485–2497

    Google Scholar 

  57. Kam N, Cohen IR, Harel D (2001) Proceedings IEEE symposia on human-centric computing languages and environments (Cat. No.01TH8587). In: HCC 2001. IEEE symposium on human-centric computing languages and environments, vol 1, Auckland. IEEE, pp 15–22

    Google Scholar 

  58. Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110

    MATH  MathSciNet  Google Scholar 

  59. Ermentrout GB, Edelsteinkeshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160:97–133

    Google Scholar 

  60. Wishart DS, Yang R, Arndt D, Tang P, Cruz J (2005) Dynamic cellular automata: an alternative approach to cellular simulation. In Silico Biol 5(2):139–161

    Google Scholar 

  61. Wurthner JU, Mukhopadhyay AK, Peimann CJ (1999) A cellular automaton model of cellular signal transduction. Comput Biol Med 30:1–21

    Google Scholar 

  62. Gardner M (1970) Mathematical games: the fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 1:120–123

    Google Scholar 

  63. Zhang L, Athale CA, Deisboeck TS (2007) Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. J Theor Biol 244:96–107

    MathSciNet  Google Scholar 

  64. Grant MR, Mostov KE, Tlsty TD, Hunt CA (2006) Simulating properties of in vitro epithelial cell morphogenesis. PLoS Comput Biol 2(10):129–134

    Google Scholar 

  65. Li NYK, Verdolini K, Clermont G, Mi Q, Rubinstein EN, Hebda PA, Vodovotz Y (2008) A Patient-Specific in silico model of Inflammation and Healing Tested in Acute Vocal Fold Injury. PLoS ONE 3(7):1–11

    Google Scholar 

  66. Lee S, Dudley AM, Drubin D, Silver PA, Krogan NJ, Pe’er D, Koller D (2009) Learning a Prior on Regulatory Potential from eQTL Data. PLoS Genet 5:1–24

    Google Scholar 

  67. Pe’er D (2005) Bayesian network analysis of signaling networks: a primer. Trans IRE Prof Group Audio 2005(281):14–24

    Google Scholar 

  68. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34(2):166–176

    Google Scholar 

  69. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Google Scholar 

  70. Gershenson C (2004) Introduction to random boolean networks, pp 1–14. eprint arXiv nlin/0408006

    Google Scholar 

  71. Thomas R (1973) Boolean formalization of genetic control circuits. J Theor Biol 42(3):563–585

    Google Scholar 

  72. Thomas R, D’Ari RTR (1990) Biological feedback. CRC, Boca Raton, pp 1–316

    MATH  Google Scholar 

  73. Bernot G, Cassez F, Comet JP, Delaplace F, Müller C, Roux O (2007) Semantics of biological regulatory networks. Electron Notes Theor Comput Sci 180(3):3–14

    Google Scholar 

  74. Petri CA (1962) Dissertation: Kommunikation mit Automaten. Schriften des Rheinisch-Westfälischen Institutes für Instrumentelle Mathematik an der Universität Bonn

    Google Scholar 

  75. Reisig W (1992) A primer in Petri net design, 1st edn. Springer, Berlin/New York

    MATH  Google Scholar 

  76. Petri C, Reisig W (2008) Petri net. Scholarpedia 3(4):6477

    Google Scholar 

  77. Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villeger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741

    Google Scholar 

  78. SBGN Documentation: SBGN entity relationship diagram. http://www.sbgn.org/Documents/ER_L1_Examples. Online; accessed 17 Aug 2013

  79. Machado D, Costa RS, Rocha M, Ferreira EC, Tidor B, Rocha I (2011) Modeling formalisms in Systems Biology. AMB Express 1:45–59

    Google Scholar 

  80. Krallinger M, Alonso-Allende Erhardt M, Valencia A (2005) Text-mining approaches in molecular biology and biomedicine. Drug Disc Today 10(6):439–445

    Google Scholar 

  81. Hoffmann R, Krallinger M, Andres E, Tamames J, Blaschke C, Valencia A (2005) Text mining for metabolic pathways, signaling cascades, and protein networks. Signal Transduct Knowl Environ 1(283):1–21

    Google Scholar 

  82. Mushegian AR, Koonin EV (1996) A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci 93(19):10268–10273

    Google Scholar 

  83. Bono H, Ogata H, Goto S, Kanehisa M (1998) Reconstruction of amino acid biosynthesis pathways from the complete genome sequence. Genome Res 8:203–210

    Google Scholar 

  84. KEGG Documentation: Overview of KGML. http://www.kegg.jp/kegg/xml/docs/. Online; accessed 17 Aug 2013

  85. Milanesi L, Romano P, Castellani G, Remondini D, Lio P (2009) Trends in modeling Biomedical Complex Systems. BMC Bioinform 10(12):1–13

    Google Scholar 

  86. Sauro HM, Bergmann FT (2008) Standards and ontologies in computational systems biology. Essays Biochem 45:211–222

    Google Scholar 

  87. Strömbäck L, Hall D, Lambrix P (2007) A review of standards for data exchange within systems biology. Proteomics 7(6):857–867

    Google Scholar 

  88. Klipp E, Liebermeister W, Helbig A, Kowald A, Schaber J (2007) Systems biology standards–the community speaks. Nat Biotechnol 25(4):390–391

    Google Scholar 

  89. McEntire R, Karp P, Abernethy N, Benton D, Helt G, DeJongh M, Kent R, Kosky A, Lewis S, Hodnett D, Neumann E, Olken F, Pathak D, Tarczy-Hornoch P, Toldo L, Topaloglou T (2000) An evaluation of ontology exchange languages for bioinformatics. Int Conf Intell Syst Mol Biol 8:239–250

    Google Scholar 

  90. Achard F, Vaysseix G, Barillot E (2001) XML, bioinformatics and data integration. Bioinformatics 17(2):115–125

    Google Scholar 

  91. Courtot M, Juty N, Knüpfer C, Waltemath D, Zhukova A, Dräger A, Dumontier M, Finney A, Golebiewski M, Hastings J, Hoops S, Keating S, Kell DB, Kerrien S, Lawson J, Lister A, Lu J, Machne R, Mendes P, Pocock M, Rodriguez N, Villeger A, Wilkinson DJ, Wimalaratne S, Laibe C, Hucka M, Le Novère N (2011) Controlled vocabularies and semantics in systems biology. Mol Syst Biol 7:1–12

    Google Scholar 

  92. Finney A, Hucka M (2003) Systems biology markup language: Level 2 and beyond. Biochem Soc Trans 31:1472–1473

    Google Scholar 

  93. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4):524–531

    Google Scholar 

  94. Miller AK, Marsh J, Reeve A, Garny A, Britten R, Halstead M, Cooper J, Nickerson DP, Nielsen PF (2010) An overview of the CellML API and its implementation. BMC Bioinform 11:178–180

    Google Scholar 

  95. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur Ö, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Reubenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung KH, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novère N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942

    Google Scholar 

  96. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B, Garapati P, Hemish J, Hermjakob H, Jassal B, Kanapin A, Lewis S, Mahajan S, May B, Schmidt E, Vastrik I, Wu G, Birney E, Stein L, D’Eustachio P (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37(Database Issue):619–622

    Google Scholar 

  97. Kalas M, Puntervoll P, Joseph A, Bartaseviciute E, Topfer A, Venkataraman P, Pettifer S, Bryne JC, Ison J, Blanchet C, Rapacki K, Jonassen I (2010) BioXSD: the common data-exchange format for everyday bioinformatics web services. Bioinformatics 26(18):540–546

    Google Scholar 

  98. Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D, Sherlock G, Ball C, Lepage M, Swiatek M, Marks WL, Goncalves J, Markel S, Iordan D, Shojatalab M, Pizarro A, White J, Hubley R, Deutsch E, Senger M, Aronow BJ, Robinson A, Bassett D, Stoeckert CJ, Brazma A (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol 3(9):1–9

    Google Scholar 

  99. Kottmann R, Gray T, Murphy S, Kagan L, Kravitz S, Lombardot T, Field D, Glöckner FO (2008) A standard MIGS/MIMS compliant XML Schema: toward the development of the Genomic Contextual Data Markup Language (GCDML). OMICS 12(2):115–121

    Google Scholar 

  100. Westbrook J, Ito N, Nakamura H, Henrick K, Berman HM (2005) PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 21(7):988–992

    Google Scholar 

  101. Hermjakob H, Montecchi-Palazzi L, Bader G, Wojcik J, Salwinski L, Ceol A, Moore S, Orchard S, Sarkans U, von Mering C, Roechert B, Poux S, Jung E, Mersch H, Kersey P, Lappe M, Li Y, Zeng R, Rana D, Nikolski M, Husi H, Brun C, Shanker K, Grant SG, Sander C, Bork P, Zhu W, Pandey A, Brazma A, Jacq B, Vidal M, Sherman D, Legrain P, Cesareni G, Xenarios I, Eisenberg D, Steipe B, Hogue C, Apweiler R (2004) The HUPO PSI’s molecular interaction format–a community standard for the representation of protein interaction data. Nat Biotechnol 22(2):177–183

    Google Scholar 

  102. Han MV, Zmasek CM (2009) phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinform 10:356

    Google Scholar 

  103. Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ (2003) An Overview of CellML 1.1, a biological model description language. Simulation 79(12):740–747

    Google Scholar 

  104. Sandhu P (2003) The MathML handbook. Charles River Media, Hingham, pp 1–10

    MATH  Google Scholar 

  105. Ausbrooks R, Buswell S, Carlisle D, Chavchanidze G, Dalmas S, Devitt S, Diaz A, Dooley S, Hunter R, Ion P, Kohlhase M, Lazrek A, Libbrecht P, Miller B, Miner R, Rowley C, Sargent M, Smith B, Soiffer N, Sutor R, Watt S (2010) Mathematical Markup Language (MathML) Version 3.0, pp 115–121. W3C recommendations-www.w3.org

  106. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The Protein Data Bank. Nucleic Acids Res 28:235–242

    Google Scholar 

  107. Strasser BJ, Dayhoff MO (2010) Collecting, comparing, and computing sequences: the making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965. J Hist Biol 43(4):623–660

    Google Scholar 

  108. Bernstein FC, Koetzle TF, Williams GJ, Meyer EF, Brice MD, Rodgers JR, Kennard O, Shimanouchi T, Tasumi M (1977) The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 112(3):535–542

    Google Scholar 

  109. Meyer EF (1997) The first years of the Protein Data Bank. Protein Sci 6(7):1591–1597

    Google Scholar 

  110. Berman H, Henrick K, Nakamura H, Markley JL (2007) The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data. Nucleic Acids Res 35(Database Issue):301–303

    Google Scholar 

  111. Hamm GH, Cameron GN (1986) The EMBL data library. Nucleic Acids Res 14:5–9

    Google Scholar 

  112. Cochrane G, Akhtar R, Bonfield J, Bower L, Demiralp F, Faruque N, Gibson R, Hoad G, Hubbard T, Hunter C, Jang M, Juhos S, Leinonen R, Leonard S, Lin Q, Lopez R, Lorenc D, McWilliam H, Mukherjee G, Plaister S, Radhakrishnan R, Robinson S, Sobhany S, Hoopen PT, Vaughan R, Zalunin V, Birney E (2009) Petabyte-scale innovations at the European Nucleotide Archive. Nucleic Acids Res 37(Database Issue):19–25

    Google Scholar 

  113. Burks C, Fickett JW, Goad WB, Kanehisa M, Lewitter FI, Rindone WP, Swindell CD, Tung CS, Bilofsky HS (1985) The GenBank nucleic acid sequence database. Comput Appl Biosci 1(4):225–233

    Google Scholar 

  114. Benson DA, Karsch-Mizrachi I, Clark K, Lipman DJ, Ostell J, Sayers EW (2012) GenBank. Nucleic Acids Res 40(Database Issue):48–53

    Google Scholar 

  115. Galperin MY, Fernandez-Suarez XM (2012) The 2012 Nucleic Acids Research Database Issue and the online Molecular Biology Database Collection. Nucleic Acids Res 40(Database Issue):1–8

    Google Scholar 

  116. Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34(Database Issue):504–506

    Google Scholar 

  117. Bolser DM, Chibon PY, Palopoli N, Gong S, Jacob D, Del Angel VD, Swan D, Bassi S, Gonzalez V, Suravajhala P, Hwang S, Romano P, Edwards R, Bishop B, Eargle J, Shtatland T, Provart NJ, Clements D, Renfro DP, Bhak D, Bhak J (2012) MetaBase–the wiki-database of biological databases. Nucleic Acids Res 40(Database Issue):1250–1254

    Google Scholar 

  118. Chen YB, Chattopadhyay A, Bergen P, Gadd C, Tannery N (2007) The Online Bioinformatics Resources Collection at the University of Pittsburgh Health Sciences Library System – a one-stop gateway to online bioinformatics databases and software tools. Nucleic Acids Res 35(Database Issue):780–785

    Google Scholar 

  119. Bateman A (2010) Curators of the world unite: the International Society of Biocuration. Bioinformatics 26(8):991

    Google Scholar 

  120. Fox JA, Butland SL, McMillan S, Campbell G, Ouellette BF (2005) The Bioinformatics Links Directory: a compilation of molecular biology web servers. Nucleic Acids Res 33(Web Server issue):3–24

    Google Scholar 

  121. Brazas MD, Yim DS, Yamada JT, Ouellette BF (2011) The 2011 Bioinformatics Links Directory update: more resources, tools and databases and features to empower the bioinformatics community. Nucleic Acids Res 39(Web Server issue):3–7

    Google Scholar 

  122. Copeland WB, Bartley BA, Chandran D, Galdzicki M, Kim KH, Sleight SC, Maranas CD, Sauro HM (2012) Computational tools for metabolic engineering. Metab Eng 14(3):270–280

    Google Scholar 

  123. Funahashi A, Morohashi M, Kitano H, Tanimura N (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162

    Google Scholar 

  124. Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, Miyano S (2010) Cell Illustrator 4.0: a computational platform for systems biology. In Silico Biol 10:5–26

    Google Scholar 

  125. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    Google Scholar 

  126. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y, Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC (1999) E-CELL: software environment for whole-cell simulation. Bioinformatics 15:72–84

    Google Scholar 

  127. Mendes P (1997) Biochemistry by numbers: simulation of biochemical pathways with Gepasi 3. Trends Biochem Sci 22(9):361–363

    Google Scholar 

  128. Mendes P (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput Appl Biosci 9(5):563–571

    Google Scholar 

  129. Sauro HM, Hucka M, Finney A, Wellock C, Bolouri H, Doyle J, Kitano H (2002) Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS: J Integr Biol 7(4):355–372

    Google Scholar 

  130. Proß S, Bachmann B (2011) An advanced environment for hybrid modeling of biological systems based on Modelica. J Integr Bioinform 8:152

    Google Scholar 

  131. Proß S, Janowski SJ, Bachmann B, Kaltschmidt C, Kaltschmidt B (2012) PNlib- a Modelica library for simulation of biological systems based on extended hybrid Petri nets. In: Proceedings of the 3rd international workshop on biological processes and Petri nets, vol 852, pp 1–16

    Google Scholar 

  132. Heiner M, Richter R, Schwarick M, Rohr C (2008) Snoopy-A tool to design and execute graph-based formalisms. Petri Net Newsl 74:8–22

    Google Scholar 

  133. Rohr C, Marwan W, Heiner M (2010) Snoopy- a unifying Petri net framework to investigate biomolecular networks. Bioinformatics 26(7):974–975

    Google Scholar 

  134. Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Simison M, Weng S, Wong ED (2012) Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40(Database Issue):700–705

    Google Scholar 

  135. Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36(7):664–664

    Google Scholar 

  136. Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml LM, Sequeira E, Suzek TO, Tatusova TA, Wagner L (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32(Database Issue):35–40

    Google Scholar 

  137. Machné R, Finney A, Müller S, Lu J, Widder S, Flamm C (2006) The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks. Bioinformatics 22(11):1406–1407

    Google Scholar 

  138. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074

    Google Scholar 

  139. Matsuno H, Doi A, Drath R, Miyano S (2000) Genomic object net: object oriented representation of biological systems. Genome Inform Ser 11:229–230

    Google Scholar 

  140. Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E (2006) TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. Nucleic Acids Res 34(Database Issue):546–551

    Google Scholar 

  141. Shannon P, Andrew M, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Google Scholar 

  142. Avila-Campillo I, Drew K, Lin J, Reiss DJ, Bonneau R (2007) BioNetBuilder: automatic integration of biological networks. Bioinformatics 23(3):392–393

    Google Scholar 

  143. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human Protein Reference Database – 2009 update. Nucleic Acids Res 37(Database Issue):767–772

    Google Scholar 

  144. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, Livstone M, Oughtred R, Lackner DH, Bähler J, Wood V, Dolinski K, Tyers M (2008) The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36(Database Issue):637–640.

    Google Scholar 

  145. Blake JA, Dolan M, Drabkin H, Hill DP, Ni L, Sitnikov D, Burgess S, Buza T, Gresham C, McCarthy F, Pillai L, Wang H, Carbon S, Lewis SE, Mungall CJ, Gaudet P, Chisholm RL, Fey P, Kibbe WA, Basu S, Siegele DA, McIntosh BK, Renfro DP, Zweifel AE, Hu JC, Brown NH, Tweedie S, Alam-Faruque Y, Apweiler R, Auchinchloss A, Axelsen K, Argoud-Puy G, Bely B, Blatter M, Bougueleret L, Boutet E, Branconi S, Breuza L, Bridge A, Browne P, Chan WM, Coudert E, Cusin I, Dimmer E, Duek-Roggli P, Eberhardt R, Estreicher A, Famiglietti L, Ferro-Rojas S, Feuermann M, Gardner M, Gos A, Gruaz-Gumowski N, Hinz U, Hulo C, Huntley R, James J, Jimenez S, Jungo F, Keller G, Laiho K, Legge D, Lemercier P, Lieberherr D, Magrane M, Martin MJ, Masson P, Moinat M, O’Donovan C, Pedruzzi I, Pichler K, Poggioli D, Porras Millan P, Poux S, Rivoire C, Roechert B, Sawford T, Schneider M, Sehra H, Stanley E, Stutz A, Sundaram S, Tognolli M, Xenarios I, Foulger R, Lomax J, Roncaglia P, Camon E, Khodiyar VK, Lovering RC, Talmud PJ, Chibucos M, Gwinn Giglio M, Dolinski K, Heinicke S, Livstone MS, Stephan R, Harris MA, Oliver SG, Rutherford K, Wood V, Bahler J, Lock A, Kersey PJ, McDowall MD, Staines DM, Dwinell M, Shimoyama M, Laulederkind S, Hayman T, Wang S, Petri V, Lowry T, D’Eustachio P, Matthews L, Amundsen CD, Balakrishnan R, Binkley G, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel SR, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS, Weng S, Wong ED, Berardini TZ, Li D, Huala E, Slonim D, Wick H, Thomas P, Chan J, Kishore R, Sternberg P, Van Auken K, Howe D, Westerfield M (2012) The Gene Ontology: enhancements for 2011. Nucleic Acids Res 40(Database Issue):559–564

    Google Scholar 

  146. Zheng J, Zhang D, Przytycki PF, Zielinski R, Capala J, Przytycka TM (2009) SimBoolNet – a Cytoscape plugin for dynamic simulation of signaling networks. Bioinformatics 26:141–142

    Google Scholar 

  147. Erhard F, Friedel CC, Zimmer R (2008) FERN – a Java framework for stochastic simulation and evaluation of reaction networks. BMC Bioinform 9:356

    Google Scholar 

  148. Takahashi K, Kaizu K, Hu B, Tomita M (2004) A multi-algorithm, multi-timescale method for cell simulation. Bioinformatics 20(4):538–546

    Google Scholar 

  149. Janowski S, Kormeier B, Töpel T, Hippe K, Hofestädt R, Willassen N, Friesen R, Rubert S, Borck D, Haugen P, Chen M (2010) Modeling of cell-to-cell communication processes with Petri Nets using the example of Quorum sensing. In Silico Biol 10:27–48

    Google Scholar 

  150. Kormeier B, Hippe K, Arrigo P, Töpel T, Janowski S, Hofestädt R (2010) Reconstruction of biological networks based on life science data integration. J Integr Bioinform 7(2):146–159

    Google Scholar 

  151. Sommer B, Tiys ES, Kormeier B, Hippe K, Janowski SJ, Ivanisenko TV, Bragin AO, Arrigo P, Demenkov PS, Kochetov AV, Ivanisenko VA, Kolchanov NA, Hofestädt R (2010) Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches. J Integr Bioinform 7:148

    Google Scholar 

  152. Proß S, Janowski SJ, Hofestädt R, Bachmann B (2012) A new object-oriented Petri net simulation Environment Based On Modelica. In: Online proceedings of the 2012 Winter simulation conference, Berlin. IEEE, pp 1–13

    Google Scholar 

  153. Klenke C, Janowski S, Borck D, Widera D, Ebmeyer LA, Kalinowski J, Leichtle A, Hofestädt R, Upile T, Kaltschmidt C, Kaltschmidt B, Sudhoff H (2012) Identification of novel cholesteatoma-related gene expression signatures using full-genome microarrays. PloS One 7(12):1–14

    Google Scholar 

  154. Association M (2005) Modelica – a unified object-oriented language for physical systems modeling. Lang Specif 2:7–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Jan Janowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Janowski, S.J., Kaltschmidt, B., Kaltschmidt, C. (2014). Biological Network Modeling and Analysis. In: Chen, M., Hofestädt, R. (eds) Approaches in Integrative Bioinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41281-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41281-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41280-6

  • Online ISBN: 978-3-642-41281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics