Network Visualization for Integrative Bioinformatics

Chapter

Abstract

Approaches to investigate biological processes have been of strong interest in the past few years and are the focus of several research areas like systems biology. Biological networks as representations of such processes are crucial for an extensive understanding of living beings. Due to their size and complexity, their growth and continuous change, as well as their compilation from databases on demand, researchers very often request novel network visualization, interaction, and exploration techniques. In this chapter, we first provide background information that is needed for the interactive visual analysis of various biological networks. Fields such as (information) visualization, visual analytics, and automatic layout of networks are highlighted and illustrated by a number of examples. Then, the state of the art in network visualization for the life sciences is presented together with a discussion of standards for the graphical representation of cellular networks and biological processes.

Keywords

Biological networks Visualization Graph drawing Visual analytics Interaction Exploration SBGN Visualization tools 

References

  1. 1.
    Abello J, van Ham F (2004) Matrix zoom: a visual interface to semi-external graphs. In: Proceedings of the IEEE symposium on information visualization, Austin. IEEE Computer Society, Los Alamitos, Texas, pp 183–190Google Scholar
  2. 2.
    Aigner W, Miksch S, Schumann H, Tominski C (2011) Visualization of time-oriented data. Springer, London/New YorkGoogle Scholar
  3. 3.
    Albrecht M, Kerren A, Klein K, Kohlbacher O, Mutzel P, Paul W, Schreiber F, Wybrow M (2010) On open problems in biological network visualization. In: Proceedings of the international symposium on graph drawing (GD ’09), Chicago. LNCS, vol 5849. Springer, pp 256–267Google Scholar
  4. 4.
    Appel RD, Bairoch A, Hochstrasser DF (1994) A new generation of information retrieval tools for biologists: the example of the ExPASy WWW server. Trends Biochem Sci 19:258–260Google Scholar
  5. 5.
    Batagelj V, Mrvar A (2004) Pajek – analysis and visualization of large networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin/New York, pp 77–103Google Scholar
  6. 6.
    Becker MY, Rojas I (2001) A graph layout algorithm for drawing metabolic pathways. Bioinformatics 17(5):461–467Google Scholar
  7. 7.
    Beddow J (1990) Shape coding of multidimensional data on a microcomputer display. In: Proceedings of the 1st conference on visualization ’90, VIS ’90, San Francisco. IEEE Computer Society Press, Los Alamitos, pp 238–246Google Scholar
  8. 8.
    Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. W H Freeman, New YorkGoogle Scholar
  9. 9.
    Berge C (1989) Hypergraphs: the theory of finite sets. North-Holland, AmsterdamGoogle Scholar
  10. 10.
    Borisjuk L, Hajirezaei MR, Klukas C, Rolletschek H, Schreiber F (2005) Integrating data from biological experiments into metabolic networks with the DBE information system. Silico Biol 5(2):93–102Google Scholar
  11. 11.
    Bostock M Edgar Anderson’s Iris data set scatter plot matrix. http://mbostock.github.com/d3/talk/20111116/iris-splom.html. Last accessed 13 Mar 2013
  12. 12.
    Breitkreutz BJ, Stark C, Tyers M (2003) Osprey: a network visualization system. Genome Biol 4(3):R22Google Scholar
  13. 13.
    Buchheim C, Jünger M, Leipert S (2002) Improving walker’s algorithm to run in linear time. In: Revised papers from the 10th international symposium on graph drawing, GD ’02, Irvine. Springer, London, pp 344–353Google Scholar
  14. 14.
    Card S, Mackinlay J, Shneiderman B (eds) (1999) Readings in information visualization: using vision to think. Morgan Kaufmann, San FranciscoGoogle Scholar
  15. 15.
    Carey VJ, Gentry J, Whalen E, Gentleman R (2005) Network structures and algorithms in BioConductor. Bioinformatics 21(1):135–136Google Scholar
  16. 16.
    Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth, BelmontMATHGoogle Scholar
  17. 17.
    Chen C (2004) Information visualization: beyond the horizon, 2nd edn. Springer, London/Berlin/HeidelbergGoogle Scholar
  18. 18.
    Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc 68:361–368Google Scholar
  19. 19.
    Cleveland WC, McGill ME (1988) Dynamic graphics for statistics. CRC, Boca RatonGoogle Scholar
  20. 20.
    Collins C, Viegas F, Wattenberg M (2009) Parallel tag clouds to explore and analyze faceted text corpora. In: Proceedings of the IEEE symposium on visual analytics science and technology (VAST ’09), Atlantic City. IEEE Computer Society, pp 91–98Google Scholar
  21. 21.
    Czauderna T, Klukas C, Schreiber F (2010) Editing, validating and translating of SBGN maps. Bioinformatics 26(18):2340–2341Google Scholar
  22. 22.
    D3. Data-driven documents. http://d3js.org. Last accessed 13 Mar 2013
  23. 23.
    Demir E, Babur O, Dogrusöz U, Gürsoy A, Nisanci G, Çetin Atalay R, Ozturk M (2002) PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics 18(7):996–1003Google Scholar
  24. 24.
    Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, Upper Saddle RiverMATHGoogle Scholar
  25. 25.
    Diehl S, Görg C, Kerren A (2001) Preserving the mental map using foresighted layout. In: Ebert DS, Favre JM, Peikert R (eds) Data visualization 2001, Eurographics, Ascona. Springer, Vienna, pp 175–184Google Scholar
  26. 26.
    Droste P, Miebach S, Niedenführ S, Wiechert W, Nöh K (2011) Visualizing multi-omics data in metabolic networks with the software Omix: a case study. Biosystems 105(2):154–161Google Scholar
  27. 27.
    Dykes J, MacEachren AM, Kraak MJ (2005) Exploring geovisualization. Pergamon, OxfordGoogle Scholar
  28. 28.
    Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149–160MathSciNetGoogle Scholar
  29. 29.
    Eiglsperger M, Fekete SP, Klau GW (2001) Orthogonal graph drawing. In: Kaufmann M, Wagner D (eds) Drawing graphs. Lecture notes in computer science, vol 2025. Springer, Berlin/Heidelberg, pp 121–171Google Scholar
  30. 30.
    EPE. EPE Edinburgh PAthway editor. http://epe.sourceforge.net/SourceForge/EPE.html. Last accessed 02 Aug 2012
  31. 31.
    ExposeData.com. Nutrient contents – parallel coordinates. http://exposedata.com/parallel/. Last accessed 13 Mar 2013
  32. 32.
    Feinberg J. Wordle. http://www.wordle.net. Last accessed 13 Mar 2013
  33. 33.
    Forster M, Pick A, Raitner M, Schreiber F, Brandenburg FJ (2002) The system architecture of the BioPath system. Silico Biol 2(3):415–426Google Scholar
  34. 34.
    Freeman E, Fertig S (1995) Lifestreams: organizing your electronic life. In: AAAI fall symposium on AI applications in knowledge navigation and retrieval, Cambridge. Association for the Advancement of Artificial Intelligence, pp 38–44Google Scholar
  35. 35.
    Friedrich C, Schreiber F (2003) Visualization and navigation methods for typed protein-protein interaction networks. Appl Bioinform 2(3 Suppl):19–24Google Scholar
  36. 36.
    Funahashi A, Morohashi M, Kitano H (2003) CellDesigner: a process diagram editor for gene-regulatory and biochemical networks. Biosilico 1(5):159–162Google Scholar
  37. 37.
    Funahashi A, Matsuoka Y, Jouraku A, Kitano H, Kikuchi N (2006) CellDesigner: a modeling tool for biochemical networks. In: Proceedings of the 38th conference on winter simulation, winter simulation conference, Monterey, pp 1707–1712Google Scholar
  38. 38.
    Fung D, Wilkins M, Hart D, Hong S (2010) Using the clustered circular layout as an informative method for visualizing protein-protein interaction networks. Proteomics 10(14):2723–2727Google Scholar
  39. 39.
    Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7:S56–S68Google Scholar
  40. 40.
    Goesmann A, Haubrock M, Meyer F, Kalinowski J, Giegerich R (2002) PathFinder: reconstruction and dynamic visualization of metabolic pathways. Bioinformatics 18(1):124–129Google Scholar
  41. 41.
    Görg C, Pohl M, Qeli E, Xu K (2007) Visual representations. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin, pp 163–230Google Scholar
  42. 42.
    Han K, Ju BH, Park JH (2002) InterViewer: dynamic visualization of protein-protein interactions. In: Kobourov SG, Goodrich MT (eds) Proceedings of the international symposium on graph drawing (GD ’02), Irvine. LNCS, vol 2528. Springer, pp 364–365Google Scholar
  43. 43.
    Heer J, Shneiderman B (2012) Interactive dynamics for visual analysis. Commun ACM 55(4):45–54Google Scholar
  44. 44.
    Henry N, Fekete JD, McGuffin MJ (2007) Nodetrix: a hybrid visualization of social networks. IEEE Trans Vis Comput Graph 13:1302–1309Google Scholar
  45. 45.
    Hu Z, Mellor J, Wu J, DeLisi C (2004) VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinform 5(1):e17Google Scholar
  46. 46.
    Hu Z, Hung JH, Wang Y, Chang YC, Huang CL, Huyck M, DeLisi C (2009) VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucl Acids Res 37(Web Server issue):W115–W121Google Scholar
  47. 47.
    Huang W, Eades P, Hong SH (2009) A graph reading behavior: geodesic-path tendency. In: Proceedings of the IEEE Pacific visualization symposium, 2009 (PacificVis ’09), Beijing, pp 137–144Google Scholar
  48. 48.
    Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531Google Scholar
  49. 49.
    Inselberg A, Dimsdale B (1990) Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Proceedings of the IEEE conference on visualization (Vis ’90), San Francisco. IEEE Computer Society, pp 361–378Google Scholar
  50. 50.
    Javed W, Elmqvist N (2012) Exploring the design space of composite visualization. In: Proceedings of the IEEE Pacific symposium on visualization (PacificVis ’12), Songdo. IEEE Computer Society Press, pp 1–8Google Scholar
  51. 51.
    Jerding DF, Stasko JT (1998) The information mural: a technique for displaying and navigating large information spaces. IEEE Trans Vis Comput Graph 4(3):257–271Google Scholar
  52. 52.
    Johnson B, Shneiderman B (1991) Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proceedings of the 2nd conference on visualization (Vis ’91), San Diego. IEEE Computer Society Press, Los Alamitos, pp 284–291Google Scholar
  53. 53.
    Jolliffe I (2002) Principal component analysis. Springer, New YorkMATHGoogle Scholar
  54. 54.
    Junker BH, Klukas C, Schreiber F (2006) VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinform 7:109Google Scholar
  55. 55.
    Junker A, Hartmann A, Schreiber F, Bäumlein H (2010) An engineer’s view on regulation of seed development. Trends Plant Sci 15(6):303–307Google Scholar
  56. 56.
    Junker A, Rohn H, Czauderna T, Klukas C, Hartmann A, Schreiber F (2012) Creating interactive, web-based and data-enriched maps using the systems biology graphical notation. Nat Protoc 7:579–593Google Scholar
  57. 57.
    Jusufi I (2012) Towards the visualization of multivariate biochemical networks. Licentiate thesis, Linnaeus UniversityGoogle Scholar
  58. 58.
    Jusufi I, Dingjie Y, Kerren A (2010) The network lens: interactive exploration of multivariate networks using visual filtering. In: Proceedings of the 14th international conference on information visualisation (IV ’10), London. IEEE Computer Society Press, pp 35–42Google Scholar
  59. 59.
    Jusufi I, Kerren A, Aleksakhin V, Schreiber F (2012) Visualization of mappings between the gene ontology and cluster trees. In: Proceedings of the SPIE 2012 conference on visualization and data analysis (VDA ’12), IS&T/SPIE, Burlingame. SPIE, vol 8294, pp 8294–20Google Scholar
  60. 60.
    Jusufi I, Klukas C, Kerren A, Schreiber F (2012) Guiding the interactive exploration of metabolic pathway interconnections. Inf Vis 11(2):136–150Google Scholar
  61. 61.
    Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucl Acids Res 30(1):42–46Google Scholar
  62. 62.
    Karp PD, Paley SM (1994) Automated drawing of metabolic pathways. In: Lim H, Cantor C, Bobbins R (eds) Proceedings of the international conference on bioinformatics and genome research, Tallahassee, pp 225–238Google Scholar
  63. 63.
    Kaser O, Lemire D (2007) Tag-cloud drawing: algorithms for cloud visualization. In: Proceedings of tagging and metadata for social information organization (WWW ’07), BanffGoogle Scholar
  64. 64.
    Kaufmann M, Wagner D (1999) Drawing graphs: methods and models. Lecture notes in computer science, tutorial, vol 2025. Springer, Berlin/HeidelbergGoogle Scholar
  65. 65.
    Keim DA (2002) Information visualization and visual data mining. IEEE Trans Vis Comput Graph 7(1):1–8Google Scholar
  66. 66.
    Keim D, Kriegel HP (1994) Visdb: database exploration using multidimensional visualization. IEEE Comput Graph Appl 14(5):40–49Google Scholar
  67. 67.
    Keim D, Oelke D (2007) Literature fingerprinting: a new method for visual literary analysis. In: Proceedings of the IEEE symposium on visual analytics science and technology (VAST ’07), Sacramento. IEEE Computer Society Press, pp 115–122Google Scholar
  68. 68.
    Keim D, Andrienko G, Fekete JD, Görg C, Kohlhammer J, Melançon G (2008) Visual analytics: definition, process, and challenges. In: Kerren A, Stasko JT, Fekete JD, North C (eds) Information visualization: human-centered issues and perspectives. Lecture notes in computer science, vol 4950. Springer, Berlin/Heidelberg, pp 154–175Google Scholar
  69. 69.
    Keim D, Kohlhammer J, Ellis G, Mansmann F (eds) (2010) Mastering the information age – solving problems with visual analytics. Eurographics Digital Library, GoslarGoogle Scholar
  70. 70.
    Kerren A, Schreiber F (2012) Toward the role of interaction in visual analytics. In: Proceedings of the winter simulation conference, winter simulation conference, WSC ’12, Berlin, pp 420:1–420:13Google Scholar
  71. 71.
    Kerren A, Ebert A, Meyer J (eds) (2007) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, BerlinGoogle Scholar
  72. 72.
    Kerren A, Ebert A, Meyer J (2007) Introduction to human-centered visualization environments. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin, pp 1–9Google Scholar
  73. 73.
    Kerren A, Stasko JT, Fekete JD, North C (2007) Workshop report: information visualization human-centered issues in visual representation, interaction, and evaluation. Inf Vis 6(3):189–196Google Scholar
  74. 74.
    Kerren A, Stasko JT, Fekete JD, North C (eds) (2008) Information visualization: human-centered issues and perspectives. Lecture notes in computer science, vol 4950. Springer, Berlin/HeidelbergGoogle Scholar
  75. 75.
    Kerren A, Köstinger H, Zimmer B (2012) Vincent – visualisation of network centralities. In: Proceedings of the international conference on information visualization theory and applications (IVAPP ’12), INSTICC, Rome, pp 703–712Google Scholar
  76. 76.
    Kitano H (2003) A graphical notation for biochemical networks. Biosilico 1(5):169–176Google Scholar
  77. 77.
    Koh K, Lee B, Kim B, Seo J (2010) Maniwordle: providing flexible control over wordle. IEEE Trans Vis Comput Graph 16:1190–1197Google Scholar
  78. 78.
    Köhler J, Baumbach J, Taubert J, Specht M, Skusa A, Rüegg A, Rawlings C, Verrier P, Philippi S (2006) Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11):1383–1390Google Scholar
  79. 79.
    Kohn KW, Aladjem MI (2006) Circuit diagrams for biological networks. Mol Syst Biol 2:e2006.0002Google Scholar
  80. 80.
    Kohonen T, Schroeder MR, Huang TS (eds) (2001) Self-organizing maps, 3rd edn. Springer, New York/SecaucusMATHGoogle Scholar
  81. 81.
    Kojima K, Nagasaki M, Jeong E, Kato M, Miyano S (2007) An efficient grid layout algorithm for biological networks utilizing various biological attributes. BMC Bioinform 8:76Google Scholar
  82. 82.
    Kolpakov FA (2002) BioUML – framework for visual modeling and simulation of biological systems. In: Proceedings of the international conference on bioinformatics of genome regulation and structure, Novosibirsk. Springer, pp 130–133Google Scholar
  83. 83.
    Kono N, Arakawa K, Ogawa R, Kido N, Oshita K, Ikegami K, Tamaki S, Tomit M (2009) Pathway projector: web-based zoomable pathway browser using KEGG Atlas and Google maps API. PLoS ONE 4(11):e7710Google Scholar
  84. 84.
    Koutsofios E, North S (1995) Drawing graphs with dot. Technical report, AT&T Bell Laboratories, Murray HillGoogle Scholar
  85. 85.
    Krull M, Voss N, Choi C, Pistor S, Potapov A, Wingender E (2003) TRANSPATH: an integrated database on signal transduction and a tool for array analysis. Nucl Acids Res 31(1):97–100Google Scholar
  86. 86.
    Küntzer J, Backes C, Blum T, Gerasch A, Kaufmann M, Kohlbacher O, Lenhof HP (2007) BNDB – the biochemical network database. BMC Bioinform 8:367Google Scholar
  87. 87.
    Lee B, Riche N, Karlson A, Carpendale S (2010) Sparkclouds: visualizing trends in tag clouds. IEEE Trans Vis Comput Graph 16(6):1182–1189Google Scholar
  88. 88.
    Le Novère N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM, Bergman FT, Gauges R, Ghazal P, Kawaji H, Li L, Matsuoka Y, Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S, Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I, Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology graphical notation. Nat Biotechnol 27(8):735–741Google Scholar
  89. 89.
    Li Q, Bao X, Song C, Zhang J, North C (2003) Dynamic query sliders vs. brushing histograms. In: CHI ’03 extended abstracts on human factors in computing systems, CHI EA ’03, Fort Lauderdale. ACM, New York, pp 834–835Google Scholar
  90. 90.
    Liu J (2012) Visualization of weather data: temperature trend visualization. Bachelor’s thesis, School of Computer Science, Physics and Mathematics, Linnaeus University, VäxjöGoogle Scholar
  91. 91.
    MacNeil S, Elmqvist N (2013) Visualization mosaics for multivariate visual exploration. Comput Graph Forum 32:38–50Google Scholar
  92. 92.
    Mardia KV (1979) Multivariate analysis. Academic, London/New YorkMATHGoogle Scholar
  93. 93.
    Mi H, Schreiber F, Novère NL, Moodie S, Sorokin A (2009) Systems biology graphical notation: activity flow language level 1. Nat Preced. doi:10.1038/npre.2009.3724.1Google Scholar
  94. 94.
    Michal G (1993) Biochemical pathways (Poster). Boehringer Mannheim, MannheimGoogle Scholar
  95. 95.
    Michal G (1998) On representation of metabolic pathways. BioSystems 47:1–7Google Scholar
  96. 96.
    Michal G (1999) Biochemical pathways. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  97. 97.
    Moodie S, Novère NL, Sorokin A, Mi H, Schreiber F (2009) Systems biology graphical notation: process description language level 1. Nat Preced. doi:10.1038/npre.2009.3721.1Google Scholar
  98. 98.
    Mrowka R (2001) A Java applet for visualizing protein-protein interaction. Bioinformatics 17(7):669–670Google Scholar
  99. 99.
    Nicholson DE (1997) Metabolic pathways map (Poster). Sigma Chemical Co., St. LouisGoogle Scholar
  100. 100.
    Nightingale F (1858) Notes on matters affecting the health, efficiency, and hospital administration of the British Army. Harrison & Sons, LondonGoogle Scholar
  101. 101.
    Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio – the analysis and navigation of molecular networks. Bioinformatics 19(16):2155–2157Google Scholar
  102. 102.
    Nöllenburg M (2007) Geographic visualization. In: Kerren A, Ebert A, Meyer J (eds) Human-centered visualization environments. LNCS, tutorial, vol 4417. Springer, Berlin, pp 257–294Google Scholar
  103. 103.
    Novère NL, Moodie S, Sorokin A, Schreiber F, Mi H (2009) Systems biology graphical notation: entity relationship language level 1. Nat Preced. doi:10.1038/npre.2009.3719.1Google Scholar
  104. 104.
    Oesterling P, Scheuermann G, Teresniak S, Heyer G, Koch S, Ertl T, Weber G (2010) Two-stage framework for a topology-based projection and visualization of classified document collections. In: Proceedings of the IEEE symposium on visual analytics science and technology (VAST ’10), Salt Lake City. IEEE Computer Society, pp 91–98Google Scholar
  105. 105.
    O’Madadhain J, Fisher D, Nelson T. JUNG – Java universal network/graph framework. http://jung.sourceforge.net/. Last accessed 27 Jan 2013
  106. 106.
    Pickett RM, Grinstein GG (1988) Iconographic displays for visualizing multidimensional data. In: Proceedings of the 1988 IEEE international conference on systems, man, and cybernetics, Beijing, vol 1, pp 514–519Google Scholar
  107. 107.
    Reingold EM, Tilford JS (1981) Tidier drawing of trees. IEEE Trans Softw Eng 7(2):223–228Google Scholar
  108. 108.
    Richard JS, Catrambone R, Guzdial M, Mcdonald K (2000) An evaluation of space-filling information visualizations for depicting hierarchical structures. Int J Hum Comput Stud 53:663–694MATHGoogle Scholar
  109. 109.
    Roberts JC (2004) Exploratory visualization with multiple linked views. In: MacEachren A, Kraak MJ, Dykes J (eds) Exploring geovisualization. Elseviers, AmsterdamGoogle Scholar
  110. 110.
    Rohn H, Junker A, Hartmann A, Grafahrend-Belau E, Treutler H, Klapperstück M, Czauderna T, Klukas C, Schreiber F (2012) VANTED v2: a framework for systems biology applications. BMC Syst Biol 6:139Google Scholar
  111. 111.
    Rohrschneider M, Heine C, Reichenbach A, Kerren A, Scheuermann G (2010) A novel grid-based visualization approach for metabolic networks with advanced focus & context view. In: Proceedings of the international symposium on graph drawing (GD ’09), Chicago. LNCS, vol 5849. Springer, pp 268–279Google Scholar
  112. 112.
    Rohrschneider M, Ullrich A, Kerren A, Stadler PF, Scheuermann G (2010) Visual network analysis of dynamic metabolic pathways. In: Proceedings of the 6th international conference on advances in visual computing – volume Part I (ISVC ’10), Las Vegas. Springer, Berlin/Heidelberg, pp 316–327Google Scholar
  113. 113.
    Salamonsen W, Mok KY, Kolatkar P, Subbiah S (1999) BioJAKE: a tool for the creation, visualization and manipulation of metabolic pathways. In: Proceedings of the Pacific symposium on biocomputing, Big Island, pp 392–400Google Scholar
  114. 114.
    Sander G (1994) Graph layout through the VCG tool. In: Tamassia R, Tollis IG (eds) Proceedings of the DIMACS international workshop on graph drawing (GD ’94), Princeton. Springer, pp 194–205Google Scholar
  115. 115.
    Schreiber F (2002) High quality visualization of biochemical pathways in BioPath. Silico Biol 2(2):59–73Google Scholar
  116. 116.
    Schreiber F, Dwyer T, Marriott K, Wybrow M (2009) A generic algorithm for layout of biological networks. BMC Bioinform 10:375Google Scholar
  117. 117.
    Schreiber F, Colmsee C, Czauderna T, Grafahrend-Belau E, Hartmann A, Junker A, Junker BH, Klapperstück M, Scholz U, Weise S (2012) MetaCrop 2.0: managing and exploring information about crop plant metabolism. Nucl Acids Res 40(1):D1173–D1177Google Scholar
  118. 118.
    Serov VN, Spirov AV, Samsonova MG (1998) Graphical interface to the genetic network database GeNet. Bioinformatics 14(6):546–547Google Scholar
  119. 119.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504Google Scholar
  120. 120.
    Shannon R, Holland T, Quigley A (2008) Multivariate graph drawing using parallel coordinate visualisations. Technical report 2008-6, School of Computer Science and Informatics, University College DublinGoogle Scholar
  121. 121.
    Shneiderman B (1996) The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the IEEE symposium on visual languages (VL ’96), Boulder. IEEE Computer Society, pp 336–343Google Scholar
  122. 122.
    Shneiderman B, Aris A (2006) Network visualization by semantic substrates. IEEE Trans Vis Comput Graph 12:733–740Google Scholar
  123. 123.
    Sirava M, Schäfer T, Eiglsperger M, Kaufmann M, Kohlbacher O, Bornberg-Bauer E, Lenhof HP (2002) BioMiner – modeling, analyzing, and visualizing biochemical pathways and networks. Bioinformatics 18(Suppl. 2):S219–S230Google Scholar
  124. 124.
    Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432Google Scholar
  125. 125.
    Sommer B, Künsemöller J, Sand N, Husemann A, Rumming M, Kormeier B (2010) Cellmicrocosmos 4.1 – an interactive approach to integrating spatially localized metabolic networks into a virtual 3d cell environment. In: Fred ALN, Filipe J, Gamboa H (eds) Proceedings of the first international conference on bioinformatics (BIOINFORMATICS ’10), Valencia, pp 90–95Google Scholar
  126. 126.
    Spence R (2007) Information visualization: design for interaction, 2nd edn. Prentice Hall, HarlowGoogle Scholar
  127. 127.
    Stasko J, Muthukumarasamy J (1996) Visualizing program executions on large data sets. In: Proceedings of the IEEE symposium on visual languages (VL ’96), Boulder. IEEE Computer Society, pp 166–173Google Scholar
  128. 128.
    Suderman M, Hallett MT (2007) Tools for visually exploring biological networks. Bioinformatics 23(20):2651–2659Google Scholar
  129. 129.
    Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical system structures. IEEE Trans Syst Man Cybern SMC-11(2):109–125MathSciNetGoogle Scholar
  130. 130.
    Thomas JJ, Cook KA (2006) A visual analytics agenda. IEEE Comput Graph Appl 26(1):10–13Google Scholar
  131. 131.
    Tufte ER (1990) Envisioning information. Graphics Press, CheshireGoogle Scholar
  132. 132.
    Tufte ER (1997) Visual explanations: images and quantities, evidence and narrative. Graphic Press, CheshireMATHGoogle Scholar
  133. 133.
    Tufte ER (2001) The visual display of quantitative information, 2nd edn. Graphics Press, CheshireGoogle Scholar
  134. 134.
    van Ham F, van Wijk JJ (2002) Beamtrees: compact visualization of large hierarchies. In: Proceedings of the IEEE symposium on information visualization (InfoVis ’02), Boston. IEEE Computer Society, pp 93–100Google Scholar
  135. 135.
    van Iersel MP, Kelder T, Pico AR, Hanspers K, Coort S, Conklin BR, Evelo C (2008) Presenting and exploring biological pathways with PathVisio. BMC Bioinform 9:399. 1–9Google Scholar
  136. 136.
    van Iersel MP, Villéger A, Czauderna T, Boyd SE, Bergmann FT, Luna A, Demir E, Sorokin AA, Dogrusöz U, Matsuoka Y, Funahashi A, Aladjem MI, Mi H, Moodie SL, Kitano H, Novère NL, Schreiber F (2012) Software support for SBGN maps: SBGN-ML and LibSBGN. Bioinformatics 28(15):2016–2021Google Scholar
  137. 137.
    Van Wijk JJ, Nuij WAA (2003) Smooth and efficient zooming and panning. In: Proceedings of the IEEE conference on information visualization (InfoVis ’03), Seattle. IEEE Computer Society, Washington, DC, pp 15–22Google Scholar
  138. 138.
    Viegas FB, Wattenberg M, Feinberg J (2009) Participatory visualization with wordle. IEEE Trans Vis Comput Graph 15:1137–1144Google Scholar
  139. 139.
    Walker JQ (1990) A node-positioning algorithm for general trees. Softw Pract Exp 20(7):685–705Google Scholar
  140. 140.
    Ward M, Grinstein G, Keim DA (2010) Interactive data visualization: foundations, techniques, and application. A.K. Peters, NatickGoogle Scholar
  141. 141.
    Ware C (2004) Information visualization: perception for design, 2nd edn. Morgan Kaufmann, San FranciscoGoogle Scholar
  142. 142.
    Wattenberg M (2006) Visual exploration of multivariate graphs. In: Proceedings of the SIGCHI conference on human factors in computing systems (CHI ’06), Montreal. ACM, New York, pp 811–819Google Scholar
  143. 143.
    Weise S, Grosse I, Klukas C, Koschützki D, Scholz U, Schreiber F, Junker BH (2006) Meta-All: a system for managing metabolic pathway information. BMC Bioinform 7:465Google Scholar
  144. 144.
    Wiese R, Eiglsperger M, Kaufmann M (2001) yFiles: visualization and automatic layout of graphs. In: Mutzel P, Jünger M, Leipert S (eds) Proceedings of the international symposium on graph drawing (GD ’01), Vienna. LNCS, vol 2265. Springer, pp 453–454Google Scholar
  145. 145.
    Williams M, Munzner T (2004) Steerable, progressive multidimensional scaling. In: Proceedings of the IEEE symposium on information visualization (InfoVis ’04), Austin. IEEE Computer Society Press, pp 57–64Google Scholar
  146. 146.
    Williamson C, Shneiderman B (1992) The dynamic homefinder: evaluating dynamic queries in a real-estate information exploration system. In: Proceedings of the international ACM conference on research and development in information retrieval (SIGIR ’92), Copenhagen. ACM, New York, pp 338–346Google Scholar
  147. 147.
    Wise J, Thomas J, Pennock K, Lantrip D, Pottier M, Schur A, Crow V (1995) Visualizing the non-visual: spatial analysis and interaction with information from text documents. In: Proceedings of the IEEE symposium on information visualization (InfoVis ’95), Atlanta. IEEE Computer Society, pp 51–58Google Scholar
  148. 148.
    Yi JS, Kang YA, Stasko J, Jacko J (2007) Toward a deeper understanding of the role of interaction in information visualization. IEEE Trans Vis Comput Graph 13(6):1224–1231Google Scholar
  149. 149.
    yWorks. yEd graph editor. http://www.yworks.com/en/products_yed_about.html. Last accessed 02 Aug 2012
  150. 150.
    Zimmer B, Jusufi I, Kerren A (2012) Analyzing multiple network centralities with ViNCent. In: Proceedings of SIGRAD 2012: interactive visual analysis of data, Växjö, 29–30 Nov 2012. Number 81 in Linköping electronic conference proceedings. Linköping University Electronic Press, pp 87–90Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceLinnaeus UniversityVäxjöSweden
  2. 2.Martin Luther University Halle-WittenbergHalleGermany
  3. 3.IPK GaterslebenGaterslebenGermany

Personalised recommendations