Skip to main content

Network Analysis and Integration in a Virtual Cell Environment

  • Chapter
  • First Online:
Approaches in Integrative Bioinformatics
  • 2151 Accesses

Abstract

Integrative Bioinformatics combines a number of different disciplines related to biology as well as informatics. One major target of this research area is the creation of a virtual cell. Naturally, this topic is accompanied by a vast amount of problems which arise due to the fact that a large number of highly specific disciplines have to be addressed. In this publication a subproblem will be discussed, functional cell modeling. Beginning with a virtual cell environment which provides cell components featuring different subcompartmental layers, protein-related networks will be localized and visualized. For the localization, a data warehouse will be accessed. Special interactive techniques will be applied to the semiautomatic analysis of localization entries found in databases. Finally, different visualization approaches will be shown, and 2D and 3D network visualization will be discussed, as well as quantitative illustrations using charts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology (The Gene Ontology Consortium). Nat Gen 25:25–29

    Article  Google Scholar 

  2. Berg JM, Tymoczko JL, Stryer L (2006) Biochemistry, 6th edn. W.H. Freeman, New York

    Google Scholar 

  3. Blake JA, Chan J, Kishore R (2013) Gene Ontology annotations and resources. Nucl Acids Res 41:D530–D535

    Article  Google Scholar 

  4. Brooks BR, Brooks CL, Mackerell Jr AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614

    Article  Google Scholar 

  5. Case DA, Cheatham TE, Darden T et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  Google Scholar 

  6. Cooper GM, Hausman RE (2007) The cell: a molecular approach, 4th edn. ASM, Washington

    Google Scholar 

  7. Croft D, O’Kelly G, Wu G (2011) Reactome: a database of reactions, pathways and biological processes. Nucl Acids Res 39:D691–D697

    Article  Google Scholar 

  8. Dimmer EC, Huntley RP, Alam-Faruque Y (2012) The UniProt-GO annotation database in 2011. Nucl Acids Res 40:D565–D570

    Article  Google Scholar 

  9. Green-Armytage P (2010) A colour alphabet and the limits of colour coding. Colour Des Creat 5:1–23

    Google Scholar 

  10. Hess B, Kutzner C, van der Spoel D et al (2008) Gromacs 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447

    Article  Google Scholar 

  11. Hippe K, Kormeier B, Töpel T et al (2010) DAWIS-MD-a data warehouse system for metabolic data. GI Jahrestag 2:720–725

    Google Scholar 

  12. Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  Google Scholar 

  13. Janowski S, Kormeier B, Töpel T et al (2010) Modeling of cell-to-cell communication processes with Petri nets using the example of quorum sensing. In Silico Biol 10:27–48

    Google Scholar 

  14. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucl Acids Res 40:D109–D114

    Article  Google Scholar 

  15. Loew LM, Schaff JC (2001) The Virtual Cell: a software environment for computational cell biology. TRENDS Biotechnol 19:401–406

    Article  Google Scholar 

  16. Martone ME, Gupta A, Wong M et al (2002) A cell-centered database for electron tomographic data. J Struct Biol 138:145–155

    Article  Google Scholar 

  17. Meyer B (1998) Self-organizing graphs—a neural network perspective of graph layout. Lect Notes Comput Sci (Graph Drawing) 1547:246–262

    Article  Google Scholar 

  18. Podkolodnaya OA, Yarkova EE, Demenkov PS et al (2011) Application of the ANDCell computer system to reconstruction and analysis of associative networks describing potential relationships between myopia and glaucoma. Russ J Genet Appl Res 1:21–28

    Article  Google Scholar 

  19. Scheer M, Grote A, Chang A (2011) BRENDA, the enzyme information system in 2011. Nucl Acids Res 39:D670–D676

    Article  Google Scholar 

  20. Sommer B (2012) CELLmicrocosmos – integrative cell modeling at the molecular, mesoscopic and functional level. Bielefeld University, Bielefeld

    Google Scholar 

  21. Sommer B, Künsemöller J, Sand N et al (2010) CELLmicrocosmos 4.1: an interactive approach to integrating spatially localized metabolic networks into a virtual 3D cell environment. In: Fred A, Filipe J, Gamboa H (eds) BIOINFORMATICS 2010 – proceedings of the 1st international conference on bioinformatics, part of the 3rd international joint conference on biomedical engineering systems and technologies (BIOSTEC 2010), INSTICC, Valencia

    Google Scholar 

  22. Sommer B, Tiys E S, Kormeier B et al (2010) Visualization and analysis of a cardio vascular disease- and MUPP1-related biological network combining text mining and data warehouse approaches. J Integr Bioinform 7:148

    Google Scholar 

  23. Sommer B, Kormeier B, Demenkov P S et al (2013) Subcellular localization charts: a new visual methodology for the semi-automatic localization of protein-related data sets. J Bioinform Comput Biol 11:1340005

    Article  Google Scholar 

  24. Takahashi K, Ishikawa N, Sadamoto Y (2003) E-Cell 2: multi-platform E-Cell simulation system. Bioinformatics 19:1727–1729

    Article  Google Scholar 

  25. Webb EC (1992) Enzyme nomenclature – recommendations of the nomenclature committee of the international union of biochemistry and molecular biology on the nomenclature and classification of enzymes, NC-IUBMB. Academic, San Diego

    Google Scholar 

  26. Widjaja YY, Pang CNI, Li SS, Wilkins MR et al (2009) The interactorium: visualising proteins, complexes and interaction networks in a virtual 3D cell. Proteomics 9:5309–5315

    Article  Google Scholar 

  27. Wurtele ES, Li J, Diao L et al (2003) MetNet: software to build and model the biogenetic lattice of Arabidopsis. Comp Funct Genom 4:239–245

    Article  Google Scholar 

  28. Wurtele ES, Bassham DC, Dickerson J et al (2010) Meta!Blast: a serious game to explore the complexities of structural and metabolic cell biology. In: Proceedings of the ASME 2010 world conference on innovative virtual reality, ASME, Ames

    Google Scholar 

  29. Yamaguchi R, Lartigue L, Perkins G (2008) Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol Cell 31:557–569

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sommer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sommer, B. (2014). Network Analysis and Integration in a Virtual Cell Environment. In: Chen, M., Hofestädt, R. (eds) Approaches in Integrative Bioinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41281-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41281-3_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41280-6

  • Online ISBN: 978-3-642-41281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics