Skip to main content

Alkyl mercury compounds: an assessment of DFT methods

  • Regular Article
  • Chapter
  • First Online:
  • 721 Accesses

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 5))

Abstract

A series of hybrid and pure density functionals have been assessed in order to provide a reliable description of infrared spectra of alkyl mercury compounds. The theoretical assessment also includes other physicochemical properties, as ionization energies and binding energies. The accuracy of the results was tested through the available experimental data and CCSD(T) calculations. B3LYP functional provides the smallest average error of all functionals considering the whole set of properties, and it offers very good results in IR spectra in particular, although other functionals as BP86, M06-L or mPW1PW91 can give even better results when looking at one particular property. Hybrid functionals B3PW91 and X3LYP and doublehybrid B2PLYP follow B3LYP in the list of most wellbehaved functionals.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications(ESPA 2012).

Electronic supplementary material The online version of this article (doi:10.1007/s00214-012-1328-2) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwood DA (ed) (2006) Recent developments in mercury science. Springer, Heidelberg

    Google Scholar 

  2. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Chem Rev 107:641–662

    Article  CAS  Google Scholar 

  3. Nriagu JO, Pacyna JM (1988) Nature 333:134–139

    Article  CAS  Google Scholar 

  4. Nriagu JO (1989) Nature 338:47–49

    Article  CAS  Google Scholar 

  5. Mousavi A, Chavez RD, Ali AMS, Cabaniss SE (2011) Environ Forensics 12:14–18

    Article  CAS  Google Scholar 

  6. Mahamud S, Ariya PA, Dastoor AP (2011) Atmos Environ 45:5664–5676

    Article  Google Scholar 

  7. Sigel A, Sigel H, Sigel RKO (eds) (2010) Metal ions in life sciences, vol 7: organometallics in environment and toxicology. RSC, London, pp 365–401, 403–434

    Google Scholar 

  8. Devaud M (1981) J Organomet Chem 220:C27–C29

    Article  CAS  Google Scholar 

  9. Shayesteh A, Yu S, Bernath PF (2005) J Phys Chem A 109:10280–10286

    Article  CAS  Google Scholar 

  10. Craig PJ, Mennie D, Needham M, Oshah N, Donard OFX, Martin FJ (1993) J Organomet Chem 447:5–8

    Article  CAS  Google Scholar 

  11. Craig PJ, Garraud H, Laurie SH, Mennie D, Stojak GH (1994) J Organomet Chem 468:7–11

    Article  CAS  Google Scholar 

  12. Kwetakat K, Kitching W (1994) J Chem Soc Chem Commun (3):345–347. doi:10.1039/C39940000345

    Google Scholar 

  13. Guillermin JC, Bellec N, Kiz-Szetsi S, Nyulaszi L, Veszpremi T (1996) Inorg Chem 35:6586–6591

    Article  Google Scholar 

  14. Goubet M, Motiyenko RA, Margule`s L, Guillemin JC (2012) J Phys Chem A 116:5405–5409

    Article  CAS  Google Scholar 

  15. Bellec M, Guillemin JC (1995) Tetrahedron Lett 36:6883–6886

    CAS  Google Scholar 

  16. Chaudret R, Contreras-García J, Delcey M, Yang W, Parisel O, Piquemal JP Understanding microsolvation of Au(I) and Hg(II) cations: antagonism effects of relativity and correlation (unpublished work in preparation)

    Google Scholar 

  17. Arcisauskaite V, Melo JI, Hemmingsen L, Sauer SPA (2011) J Chem Phys 135:044306-1–044306-11

    Google Scholar 

  18. Barone V, Bencini A, Totti F, Uytterhoeven MG (1997) Int J Quant Chem 61:361–367

    Article  CAS  Google Scholar 

  19. Kaupp M, Malkina OL (1998) J Chem Phys 108:3648–3659

    Article  CAS  Google Scholar 

  20. Lin TP, Wade CR, Pérez LM, Gabbai FP (2010) Angew Chem Int Ed 49:6357–6360

    Article  CAS  Google Scholar 

  21. Afaneh AT, Schreckenbach G, Wang F (2012) Theor Chem Acc 131:1174–1191

    Article  Google Scholar 

  22. Castro L, Dommergue A, Larose C, Ferrari C, Maron L (2011) J Phys Chem A 115:5602–5608

    Article  CAS  Google Scholar 

  23. Li X, Liao RZ, Zhou W (2010) Chem Phys Chem Chem Phys 12:3961–3971

    Article  CAS  Google Scholar 

  24. Castro L, Dommergue A, Ferrari C, Maron L (2009) Atmos Environ 43:5708–5711

    Article  CAS  Google Scholar 

  25. Maron L, Dommergue A, Ferrari C, Delacour-Larose M, Fai?n X (2008) Chem Eur J 14:8322–8329

    Article  CAS  Google Scholar 

  26. Alfonso M, Contreras-García J, Espinosa A, Tárraga A, Molina P (2012) Dalton Trans 41:4437–4444

    Article  CAS  Google Scholar 

  27. Kretschmer R, Schlangen M, Kaupp M, Schwarz H (2012) Organometallics 31:3816–3824

    Article  CAS  Google Scholar 

  28. Beck W, Klapötke TM (2008) J Mol Struct (Theochem) 848:94–97

    Article  CAS  Google Scholar 

  29. Soldán P, Lee EPF, Wright TG (2002) J Phys Chem A 106:8619–8626

    Article  Google Scholar 

  30. Sládek V, Lukes V, Ilcin M, Biskupic S (2012) J Comput Chem 33:767–778

    Article  Google Scholar 

  31. Cundari TR, Yoshikawa A (1998) J Comput Chem 19:902–911

    Article  CAS  Google Scholar 

  32. Castro L, Dommergue A, Renard A, Ferrari C, Ramírez-Solís A, Maron L (2011) Phys Chem Chem Phys 13:16772–16779

    Article  CAS  Google Scholar 

  33. Hernández-Cobos J, Ramírez-Solís A, Maron L, Ortega-Blake I(2012) J Chem Phys 136:014502–014510

    Google Scholar 

  34. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg, JJ, Dapprich S, Daniels AD, Farkas Ö , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A1. Gaussian, Wallingford

    Google Scholar 

  35. Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  36. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Article  Google Scholar 

  37. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  38. Lee C, Yang W, Parr R (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  39. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  40. Xu X, Goddard WA III (2004) Proc Natl Acad Sci USA 101:2673–2677

    Article  CAS  Google Scholar 

  41. Grimme S (2006) J Chem Phys 124:034108–034124

    Article  Google Scholar 

  42. Iikura I, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  43. Hirao K (2012) Recent advances in LC–DFT. In: Electronic structure theory for strongly correlated systems. Oral Communication, Palermo

    Google Scholar 

  44. Grimme S (2006) J Comp Chem 27:1787–1799

    Article  CAS  Google Scholar 

  45. Adamo C, Barone V (1999) J Chem Phys 110:6158–6169

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  47. Adamo C, Barone V (1998) J Chem Phys 108:664–675

    Article  CAS  Google Scholar 

  48. Perdew JP (1991) In: Ziesche P, Eschrig H (eds) Electronic structure of solids. Akademie Verlag, Berlin

    Google Scholar 

  49. Burke K, Perdew JP, Yang W (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Springer, Heidelberg

    Google Scholar 

  50. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  Google Scholar 

  51. Feller D (1996) J Comp Chem 17:1571–1586

    CAS  Google Scholar 

  52. Schuchardt KL, Didier BT, Eisethagen T, Sun L, Gurumoorthi V, Chase J, Li J, Windus TL (2007) J Chem Inf Model 47:1045–1052

    Article  CAS  Google Scholar 

  53. Dunning Jr TH, Hay PJ (1976) In: Schaefer III HF (ed) Modern theoretical chemistry, vol 3. Plenum, New York

    Google Scholar 

  54. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  55. Wadt WR, Hay PJ (1985) J Chem Phys 82:284–298

    Article  CAS  Google Scholar 

  56. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  57. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  58. Martin JML, Sundermann A (2001) J Chem Phys 114:3408–3420

    Article  CAS  Google Scholar 

  59. Peterson KA, Puzzarini C (2005) Theor Chem Acc 114:283–296

    Article  CAS  Google Scholar 

  60. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244

    Article  CAS  Google Scholar 

  61. Weigend F, Alrichs R (2005) Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  62. Rappoport D, Furche F (2010) J Chem Phys 133:134105–134116

    Article  Google Scholar 

  63. Jacox ME (2002) Chem Soc Rev 31:108–115

    Article  CAS  Google Scholar 

  64. Wang X, Andrews L (2005) Phys Chem Chem Phys 7:750–759

    Article  CAS  Google Scholar 

  65. Legay-Sommaire N, Legay F (1996) Chem Phys 211:367–375

    Article  CAS  Google Scholar 

  66. Greene TM, Andrews L, Downs AJ (1995) J Am Chem Soc 117:8180–8187

    Article  CAS  Google Scholar 

  67. Shimanouchi T (1972) J Phys Chem Ref Data 6(3):993–1102

    Article  Google Scholar 

  68. Wang X, Andrews L (2005) Inorg Chem 44:108

    Article  Google Scholar 

  69. Botschwina P, Sebald P, Figgen D, Stoll H (2007) Mol Phys 105:1193–1205

    Article  CAS  Google Scholar 

  70. Perdew JP, Levy M (1997) Phys Rev B 56:16021–16028

    Article  CAS  Google Scholar 

  71. Rosenstock HM, Draxl K, Steiner BW, Herron JT (2012) In: Linstrom PJ, Mallard WG (eds) Ion energetics data in NIST chemistry WebBook. NIST standard reference database number69. National Institute of Standards and Technology, Gaithersburg, MD, 20899. http://webbook.nist.gov. Retrieved 18 Oct 2012

    Google Scholar 

  72. Fehlner TP, Ulman J, Nugent WA, Kochi JK (1976) Inorg Chem 15:2544–2548

    Article  CAS  Google Scholar 

  73. Creber DK, Bancroft GM (1980) Inorg Chem 19:643–648

    Article  CAS  Google Scholar 

  74. Nugent WA, Wu M.M.-H., Fehlner TP, Kochi JK (1976) J Chem Soc Chem Commun (12):456–457. doi:10.1039/C39760000456

    Google Scholar 

  75. Sigel H (1993) Chem Soc Rev 22:255–267

    Article  CAS  Google Scholar 

  76. Eizaguirre A, Yáñez M, Tortajada J, Salpin J-Y (2008) Chem Phys Lett 464:240–244

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Merced Montero-Campillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Montero-Campillo, M.M., Lamsabhi, A.M., Mó, O., Yáñez, M. (2014). Alkyl mercury compounds: an assessment of DFT methods. In: Novoa, J., Ruiz López, M. (eds) 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41272-1_14

Download citation

Publish with us

Policies and ethics