Skip to main content

Introduction

  • Chapter
  • 1286 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

Our nature is uncertain. Given this fact, there are two main streams of philosophy to understand uncertainty. First, the nature is incomplete and is full of uncertainties. Uncertainty is an objective and undeniable fact of nature. The second stream implies that the nature is governed by orders and laws. However, we cannot perceive all these laws from our limited cognitive abilities. That is where the uncertainties come from. The existence of uncertainty is because of the lack of information. Following these two streams of philosophy, uncertainty can be roughly classified into the following two categories

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://en.wikiquote.org/wiki/Dennis_Lindley, accessed on March 19, (2011).

    Google Scholar 

  2. Jaynes E. T.: Probability Theory: The Logic of Science. Cambridge University Press, (2003).

    Google Scholar 

  3. Bishop C. M.: Neural Networks for Pattern Recognition. Oxford Uni. Press. (1995).

    Google Scholar 

  4. Jordan M. I.: Learning in Graphical Models, MIT Press. (1999).

    Google Scholar 

  5. Zadeh L. A.: Fuzzy sets, Information and Control, 8: pp. 338–353. (1965).

    Article  MathSciNet  MATH  Google Scholar 

  6. http://en.wikipedia.org/wiki/Yin_and_yang, accessed on March 29, (2011).

    Google Scholar 

  7. http://en.wikipedia.org/wiki/Fuzzy_logic, accessed on March 29, (2011).

    Google Scholar 

  8. Mitchell T.: Machine Learning, McGraw-Hill, New York. (1997).

    MATH  Google Scholar 

  9. Rogers S., Girolami M., Campbell C., and Breitling R.: he latent process decomposition of cDNA microarray data sets, ACM Trans. on Computational Biology and Bioinformatics, 2(2), April–June. (2005).

    Google Scholar 

  10. Manning C. D., Schuze H.: Foundations of Statistical Natural Language Processing The MIT Press, Cambridge, Massachusetts. (1999).

    MATH  Google Scholar 

  11. L. Fei-Fei, Perona P.: A Bayesian hierarchical model for learning natural scene categories. Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 524–531. (2005).

    Google Scholar 

  12. Mackay D. J. C.: Information Theory, Inference, and Learning Algorithms, Cambridge University Press. (2003).

    Google Scholar 

  13. Manning C. D., Raghavan P., Schuze H.: Introduction to Information Retrieval, Cambridge University Press. (2008).

    Google Scholar 

  14. Lawry J., Shanahan J., Ralescu A.: Modelling with Words: Learning, fusion, and reasoning within a formal linguistic representation framework. LNAI 2873, Springer-Verlag. (2003).

    Google Scholar 

  15. Zadeh L. A.: Fuzzy logic = computing with words, IEEE Transaction on Fuzzy Systems. 4(2): pp. 103–111. (1996).

    Article  MathSciNet  Google Scholar 

  16. Lawry J.: A framework for linguistic modelling, Artificial Intelligence, 155: pp. 1–39. (2004).

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhou Z. H.: Three perspectives of data mining, Artificial Intelligence, 143(1): 139–146.(2003).

    Article  MATH  Google Scholar 

  18. Quinlan J. R.: Induction of decision trees, Machine Learning, 1: pp. 81–106. (1986).

    Google Scholar 

  19. Quinlan J. R.:C4.5: Programs for Machine Learning, San Mateo: Morgan Kaufmann. (1993).

    Google Scholar 

  20. Bezdek J. C., Keller J. M., Krishnapuram R., Pal N.: Fuzzy models and algorithms for pattern recognition and image processing. The Handbooks on Fuzzy Sets, Netherlands, (1999).

    Book  MATH  Google Scholar 

  21. Kosko B.: Fuzzy Thinking: The New Science of Fuzzy Logic, Hyperion/Disney Books, (1993).

    Google Scholar 

  22. Dubois D., Prade H., Yager R.R.: Information engineering and fuzzy logic. Proceedings of 5th IEEE International Conference on Fuzzy Systems, pp. 1525–1531. (1996).

    Google Scholar 

  23. Lawry J.: Modelling and Reasoning with Vague Concepts, Springer. (2006).

    Google Scholar 

  24. Gabbay D.: Classical vs non-classical logic’. In Gabbay D. M., Hogger C. J., and Robinson J. A.(Eds), Handbook of Logic in Artificial Intelligence and Logic Programming, 2, Oxford University Press.

    Google Scholar 

  25. Hullermeier E.: Fuzzy methods in machine learning and data mining: status and prospects, to appear in Fuzzy Sets and Systems. (2005).

    Google Scholar 

  26. Laurentm A.: Generating fuzzy summaries: a new approach based on fuzzy multidimensional databases. Journal of Intelligent Data Analysis, 7(2): pp. 155–177. (2003).

    Google Scholar 

  27. Viertl R.: Statistical methods for non-precise data. CRC Press, Boca Raton, Florida. (1996).

    Google Scholar 

  28. Baldwin J. F., Xie D.: Simple fuzzy logic rules based on fuzzy decision tree for classification and prediction problem, Intelligent Information Processing II, Z. Shi, Q. He (Ed.), Springer. (2004).

    Google Scholar 

  29. Xie D.: Fuzzy associated rules discovered on effective reduced database algorithm, To appear in the Proceedings of IEEE-FUZZ, Reno, USA. (2005).

    Google Scholar 

  30. Klose A., Kruse R.: Information mining with semi-supervised learning, Soft Methodology and Random Information Systems-Proceedings of the 2nd International Conference on Soft Methods in Probability and Statistics (SMPS’2004), Springer. (2004).

    Google Scholar 

  31. Drobics M., Bodenhofer U., Klement E. P.: FS-FOIL: an inductive learning method for extracting interpretable fuzzy descriptions, International Journal of Approximate Reasoning, 32: pp. 131–152. (2003)

    Article  MATH  Google Scholar 

  32. Lawry J., Han D., Cluckie I.D.: Fuzzy rule generation in hydrological modelling, Soft Methodology and Random Information Systems-Proceedings of the 2nd International Conference on Soft Methods in Probability and Statistics (SMPS’2004), Springer. (2004).

    Google Scholar 

  33. Jang J. S. R., Sun C. T. and Mizutani E.: Neuro-Fuzzy and Soft Computing, Prentice-Hall, Inc. Simon & Schuster. (1997).

    Google Scholar 

  34. Nauck D., Klawonn F., Kruse R.: Foundations of neuro-fuzzy systems. United Kingdom. (1997).

    Google Scholar 

  35. Cordón O., Herrera F.: A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases from examples. International Journal of Approximate Reasoning, 17(4), pp. 369–407. (1997).

    Article  MATH  Google Scholar 

  36. Thrift P.: Fuzzy logic systhesis with genetic algorithms. Proceedings of the 4th International Conference on Genetic Algorithms, pp. 509–513. (1991).

    Google Scholar 

  37. Chiu S. L.: Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2(6), pp. 267–278. (1994).

    Google Scholar 

  38. Berthold M., Huber K. P.: Constructing fuzzy graphs from examples. International Journal of Intelligent Data Analysis, 3(1), pp. 37–53. (1999).

    Article  MATH  Google Scholar 

  39. Bárdossy A., Duckstein L.: Fuzzy rule-based modeling with application to geophysical biological and engineering systems. CRC Press. (1995).

    Google Scholar 

  40. Nozaki K., Ishibuchi H., Tanaka H.: A simple but powerful heristic method for generating fuzzy rules from numerical data. Fuzzy Sets and Systems, 86(3), pp. 251–270. (1997).

    Article  Google Scholar 

  41. Wang L. X., Mendel J. M.: Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), pp. 1414–1427. (1992).

    Article  MathSciNet  Google Scholar 

  42. Kruse R.: Information mining. Proceedings of the International Conference of the European society for Fuzzy Logical and Technology, pp. 6–9. (2001).

    Google Scholar 

  43. Quinlan J. R.: Deciion trees at probabilistic classifiers, Proceedings of 4th International Workshop on Machine Learning, pp. 31–37, Morgan Kauffman. (1987).

    Google Scholar 

  44. Chang R. L. P., Pavlidis T.: Fuzzy decision tree algorithm, IEEE Trans. on Systems, Man and Cybernetics, 7(1): pp. 28–35. (1977).

    Article  MathSciNet  MATH  Google Scholar 

  45. Olaru C., Wehenkel L.: A complete fuzzy decision tree technique, Fuzzy Sets and Systems, 138: pp. 221–254. (2003).

    Article  MathSciNet  Google Scholar 

  46. Yuan Y., Shaw M. J.: Induction of fuzzy decision trees, Fuzzy Sets and Systems, 69: pp. 125–139. (1995).

    Article  MathSciNet  Google Scholar 

  47. Wang X. Z., Chen B., Qian G., Ye F.: On the optimization of fuzzy decision trees, Fuzzy Sets and Systems, 112(1): pp. 117–125. (2000).

    Article  MathSciNet  Google Scholar 

  48. Baldwin J. F., Lawry J., Martin T. P.: Mass assignment fuzzy ID3 with applications. Proceedings of the Unicom Workshop on Fuzzy Logic: Applications and Future Directions, pp. 278–294, London. (1997).

    Google Scholar 

  49. Shafer G.: A Mathematical Theory of Evidence, Princeton University Press. (1976).

    Google Scholar 

  50. Elouedi Z., Mellouli K., Smets P.: Decision trees using the belief function theory. Proceedings IPMU-2000 1: pp. 141–148. (2000).

    Google Scholar 

  51. Zheng J., Tang Y.: One generalization of the Naibe Bayes to fuzzy sets and the design of the fuzzy Naive Bayes Classifier, IWINAC-(2005), LNCS 3562, pp. 281–290, Springer-Verlag. (2005).

    Google Scholar 

  52. Di Tomaso E.: Soft Computer for Bayesian Networks, PhD Thesis, Department of Engineering Mathematics, University of Bristol. (2004).

    Google Scholar 

  53. Randon N. J., Lawry J.: Linguistic modelling using a semi-Naive Bayes framework, IPMU-(2002), Annecy, France. (2002).

    Google Scholar 

  54. Randon N. J., Lawry J.: Classification and query evaluation using modelling with words. Information Sciences, 176, pp. 438–464, (2006).

    Article  MathSciNet  MATH  Google Scholar 

  55. Randon N. J.: Fuzzy and Random Set Based Induction Algorithms, PhD Thesis, Department of Engineering Mathematics, University of Bristol. (2004).

    Google Scholar 

  56. Chipman H. A., George E. I., McCulloch R. E.: Bayesian treed models, Machine Learning, 48: pp. 299–320. (2002).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qin, Z., Tang, Y. (2014). Introduction. In: Uncertainty Modeling for Data Mining. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41251-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41251-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41250-9

  • Online ISBN: 978-3-642-41251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics