EarGram: An Application for Interactive Exploration of Concatenative Sound Synthesis in Pure Data
Conference paper
- 2 Citations
- 2.8k Downloads
Abstract
This paper describes the creative and technical processes behind earGram, an application created with Pure Data for real-time concatenative sound synthesis. The system encompasses four generative music strategies that automatically rearrange and explore a database of descriptor-analyzed sound snippets (corpus) by rules other than their original temporal order into musically coherent outputs. Of note are the system’s machine-learning capabilities as well as its visualization strategies, which constitute a valuable aid for decisionmaking during performance by revealing musical patterns and temporal organizations of the corpus.
Keywords
Concatenative sound synthesis recombination generative musicPreview
Unable to display preview. Download preview PDF.
References
- 1.Schwarz, D.: Data-driven Concatenative Sound Synthesis. Université Paris 6 – Pierre et Marie Curie. PhD thesis (2004)Google Scholar
- 2.Zils, A., Pachet, F.: Musical mosaicking. In: Proceedings of the COST G-6 Conference on Digital Audio Effects, Limerick, Ireland (December 2001)Google Scholar
- 3.Schwarz, D.: A System for Data-driven Concatenative Sound Synthesis. In: Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX 2000), Verona, Italy, pp. 97–102 (2000)Google Scholar
- 4.Bernardes, G., Peixoto de Pinho, N., Lourenço, S., Guedes, C., Pennycook, B., Oña, E.: The Creative Process Behind Dialogismos I: Theoretical and Technical Considerations. In: Proceedings of the ARTECH 2012 - 6th International Conference on Digital Arts, Faro, Portugal, pp. 2012–2016 (2012)Google Scholar
- 5.5. Ricard, J.: Towards computational morphological description of sound. PhD Thesis, Universitat Pompeu Fabra, Barcelona, Spain (2004)Google Scholar
- 6.Schnell, N., Cifuentes, M., Lambert, J.P.: First Steps in Relaxed Real-time Typo-morphological Audio Analysis/Synthesis. In: Proceedings of the Sound and Music Computing Conference, Barcelona (2010)Google Scholar
- 7.Jehan, T.: Creating Music by Listening. Ph.D. Thesis, M.I.T., MA (2005) Google Scholar
- 8.Schwarz, D., Cahen, R., Britton, S.: Principles and Applications of Interactive Corpus-based Concatenative Synthesis. In: Journées d’Informatique Musicale (2008)Google Scholar
- 9.Dixon, S.: An interactive beat tracking and visualization system. In: Proceedings International Computer Music Conference (2001)Google Scholar
- 10.Schaeffer, P.: Traité des objets musicaux. Le Seuil, Paris (1966)Google Scholar
- 11.Smalley, D.: Spectro-morphology and Structuring Processes. In: Emmerson, S. (ed.) The Language of Electroacoustic Music, pp. 61–93. Macmillan, London (1986)Google Scholar
- 12.Thoresen, L., Hedman, A.: Spectromorphological Analysis of Sound Objects: An Adaptation of Pierre Schaeffer’s Typomorphology. Organised Sound 12, 129–141 (2007)CrossRefGoogle Scholar
- 13.Brent, W.: A Timbre Analysis and Classification Toolkit for Pure Data. In: Proceedings of the International Computer Music Conference (2010)Google Scholar
- 14.Frisson, C., Picard, C., Tardieu, D.: Audiogarden: Towards a Usable Tool for Composite Audio Creation. QPSR of the Numediart Research Program 3(2) (2010)Google Scholar
- 15.Sturm, B.: Adaptive Concatenative Sound Synthesis and Its Application to Micromontage Composition. Computer Music Journal 30(3), 46–66 (2006)CrossRefGoogle Scholar
- 16.Porres, A.T.: Dissonance Model Toolbox in Pure Data. In: Proceedings of the 4th Pure Data Convention, Weimar, Germany (2011)Google Scholar
- 17.Heyer, L., Kruglyak, S., Yooseph, S.: Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research 9, 1106–1115 (1999)CrossRefGoogle Scholar
- 18.Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In: Proceedings of the Knowledge Discovery and Data Mining, pp. 226–231. AAAI Press (1996)Google Scholar
- 19.Kandogan, E.: Visualizing Multi-dimensional Clusters, Trends, and Outliers using Star Coordinates. In: Proceedings of the Knowledge and Data Mining (2001)Google Scholar
- 20.Wattenberg, M.: Arc Diagrams: Visualizing Structure in Strings. In: Proceedings of the IEEE Information Visualization Conference (2002)Google Scholar
- 21.Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer (2009)Google Scholar
- 22.Barlow, C.: Two essays on theory. Computer Music Journal 11, 44–60 (1987)CrossRefGoogle Scholar
- 23.Bernardes, G., Guedes, C., Pennycook, B.: Style Emulation of Drum Patterns by Means of Evolutionary Methods and Statistical Analysis. In: Proceedings of the Sound and Music Computing Conference, Barcelona, Spain (2010)Google Scholar
- 24.Sioros, G., Guedes, C.: Automatic Rhythmic Performance in Max/MSP: the kin.rhythmicator. In: Proceedings of the International Conference on New Interfaces for Musical Expression, Oslo, Norway (2011)Google Scholar
- 25.SoundHack Plugins Bundle, http://soundhack.henfast.com/
Copyright information
© Springer-Verlag Berlin Heidelberg 2013