Caching and Prefetching Strategies for SPARQL Queries

  • Johannes Lorey
  • Felix Naumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7955)


Linked Data repositories offer a wealth of structured facts, useful for a wide array of application scenarios. However, retrieving this data using Sparql queries yields a number of challenges, such as limited endpoint capabilities and availability, or high latency for connecting to it. To cope with these challenges, we argue that it is advantageous to cache data that is relevant for future information needs. However, instead of retaining only results of previously issued queries, we aim at retrieving data that is potentially interesting for subsequent requests in advance. To this end, we present different methods to modify the structure of a query so that the altered query can be used to retrieve additional related information. We evaluate these approaches by applying them to requests found in real-world Sparql query logs.


Graph Pattern Sparql Query Query Pattern Triple Pattern Augmentation Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: Proceedings of the International Conference on Information and Knowledge Management (CIKM), Maui, HI, USA, pp. 1532–1536 (October 2012)Google Scholar
  2. 2.
    Berendt, B., Hollink, L., Luczak-Rösch, M., Möller, K.H., Vallet, D.: USEWOD2013 – 3rd international workshop on usage analysis and the web of data. In: 10th Extended Semantic Web Conference (ESWC) – Semantics and Big Data, Montpellier, France (2013)Google Scholar
  3. 3.
    Carpineto, C., Romano, G.: A survey of automatic query expansion in information retrieval. ACM Comput. Surv. 44(1), 1:1–1:50 (2012)CrossRefGoogle Scholar
  4. 4.
    Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic data caching and replacement. In: Proceedings of the International Conference on Very Large Databases (VLDB), Bombay, India, pp. 330–341 (1996)Google Scholar
  5. 5.
    Elbassuoni, S., Ramanath, M., Weikum, G.: Query relaxation for entity-relationship search. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 62–76. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Fagni, T., Perego, R., Silvestri, F., Orlando, S.: Boosting the performance of web search engines: Caching and prefetching query results by exploiting historical usage data. ACM Transactions on Information Systems 24(1), 51–78 (2006)CrossRefGoogle Scholar
  7. 7.
    Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards fuzzy query-relaxation for RDF. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 687–702. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Jonassen, S., Cambazoglu, B.B., Silvestri, F.: Prefetching query results and its impact on search engines. In: Proceedings of the ACM International Conference on Information Retrieval (SIGIR), Portland, OR, USA, pp. 631–640 (2012)Google Scholar
  10. 10.
    Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logist. Quarterly 2(1-2), 83–97 (1955)CrossRefGoogle Scholar
  11. 11.
    Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web applications with SPARQL query caching. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transactions on Database Systems (TODS) 34(3), 16:1–16:45 (2009)CrossRefGoogle Scholar
  13. 13.
    Ren, Q., Dunham, M.H.: Using semantic caching to manage location dependent data in mobile computing. In: Proceedings of the International Conference on Mobile Computing and Networking, Boston, MA, United States, pp. 210–221 (2000)Google Scholar
  14. 14.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic graph pattern optimization using selectivity estimation. In: Proceedings of the International World Wide Web Conference (WWW), New York, NY, USA, pp. 595–604 (2008)Google Scholar
  15. 15.
    Yang, M., Wu, G.: Caching intermediate result of SPARQL queries. In: Proceedings of the International World Wide Web Conference (WWW), Hyderabad, India, pp. 159–160 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Johannes Lorey
    • 1
  • Felix Naumann
    • 1
  1. 1.Hasso Plattner InstitutePotsdamGermany

Personalised recommendations