Advertisement

FRED: From Natural Language Text to RDF and OWL in One Click

  • Francesco Draicchio
  • Aldo Gangemi
  • Valentina Presutti
  • Andrea Giovanni Nuzzolese
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7955)

Abstract

FRED is an online tool for converting text into internally well-connected and quality linked-data-ready ontologies in web-service-acceptable time. It implements a novel approach for ontology design from natural language sentences. In this paper we present a demonstration of such tool combining Discourse Representation Theory (DRT), linguistic frame semantics, and Ontology Design Patterns (ODP). The tool is based on Boxer which implements a DRT-compliant deep parser. The logical output of Boxer enriched with semantic data from Verbnet or Framenet frames is transformed into RDF/OWL by means of a mapping model and a set of heuristics following ODP best-practice [5] of OWL ontologies and RDF data design.

References

  1. 1.
    Bos, J.: Wide-Coverage Semantic Analysis with Boxer. In: Bos, J., Delmonte, R. (eds.) Semantics in Text Processing. STEP 2008 Conference Proceedings. Research in Computational Semantics, vol. 1, pp. 277–286. College Publications (2008)Google Scholar
  2. 2.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer (2006)Google Scholar
  3. 3.
    Cimiano, P., Vlker, J.: Text2onto - a framework for ontology learning and data-driven change discovery (2005)Google Scholar
  4. 4.
    Coppola, B., Gangemi, A., Gliozzo, A., Picca, D., Presutti, V.: Frame detection over the semantic web. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 126–142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Gangemi, A., Presutti, V.: Ontology Design Patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn., Springer (2009)Google Scholar
  6. 6.
    Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16, 72–79 (2001)CrossRefGoogle Scholar
  7. 7.
    Magnini, B., Pianta, E., Popescu, O., Speranza, M.: Ontology population from textual mentions: Task definition and benchmark. In: Proceedings of the OLP2 workshop on Ontology Population and Learning, Sidney, Australia (2006)Google Scholar
  8. 8.
    Tanev, H., Magnini, B.: Weakly supervised approaches for ontology population. In: Proceedings of the 2008 Conference on Ontology Learning and Population: Bridging the Gap between Text and Knowledge, Amsterdam, The Netherlands, pp. 129–143. IOS Press (2008)Google Scholar
  9. 9.
    Witte, R., Khamis, N., Rilling, J.: Flexible ontology population from text: The owlexporter. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S., Rosner, M., Tapias, D. (eds.) LREC. European Language Resources Association (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Francesco Draicchio
    • 1
  • Aldo Gangemi
    • 1
    • 3
  • Valentina Presutti
    • 1
    • 2
  • Andrea Giovanni Nuzzolese
    • 1
    • 2
  1. 1.STLabISTC Consiglio Nazionale delle RicercheRomeItaly
  2. 2.Dipartimento di Scienze dell’InformazioneUniversità di BolognaItaly
  3. 3.LIPN,UMR CNRSUniversité Paris 13Sorbone CitéFrance

Personalised recommendations