Abstract
Payola is a framework for Linked Data analysis and visualization. The goal of the project is to provide end users with a tool enabling them to analyze Linked Data in a user-friendly way and without knowledge of SPARQL query language. This goal can be achieved by populating the framework with variety of domain-specific analysis and visualization plugins. The plugins can be shared and reused among the users as well as the created analyses. The analyses can be executed using the tool and the results can be visualized using a variety of visualization plugins. The visualizations can be further customized according to ontologies used in the resulting data. The framework is highly extensible and uses modern technologies such as HTML5 and Scala. In this paper we show two use cases, one general and one from the domain of public procurement.
Keywords
- Linked Data
- RDF
- visualization
- analysis
The research is supported in part by the EU ICT FP7 under No.257943, LOD2 project and in part by the Technology Agency of the Czech Republic (TAČR) grant number TA02010182.
Download conference paper PDF
References
Araujo, S., Shwabe, D., Barbosa, S.: Experimenting with Explorator: a Direct Manipulation Generic RDF Browser and Querying Tool. In: WS on Visual Interfaces to the Social and the Semantic Web, VISSW 2009 (2009)
Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer, A., Sheets, D.: Tabulator: Exploring and analyzing linked data on the semantic web. In: 3rd Int. Semantic Web User Interaction WS (2006)
Le-Phuoc, D., Polleres, A., Hauswirth, M., Tummarello, G., Morbidoni, C.: Rapid prototyping of semantic mash-ups through semantic web pipes. In: Proceedings of the 18th international conference on World wide web, WWW 2009, pp. 581–590. ACM, New York (2009)
Zviedris, M., Barzdins, G.: ViziQuer: A Tool to Explore and Query SPARQL Endpoints. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 441–445. Springer, Heidelberg (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klímek, J., Helmich, J., Nečaský, M. (2013). Payola: Collaborative Linked Data Analysis and Visualization Framework. In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds) The Semantic Web: ESWC 2013 Satellite Events. ESWC 2013. Lecture Notes in Computer Science, vol 7955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41242-4_14
Download citation
DOI: https://doi.org/10.1007/978-3-642-41242-4_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-41241-7
Online ISBN: 978-3-642-41242-4
eBook Packages: Computer ScienceComputer Science (R0)