Investigating the Application of One Instruction Set Computing for Encrypted Data Computation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8204)


The cloud computing revolution has emphasized the need to execute programs in private using third party infrastructure. In this work, we investigate the application of One Instruction Set Computing (OISC) for processing encrypted data. This novel architecture combines the simplicity and high throughput of OISC with the security of well-known homomorphic encryption schemes, allowing execution of encrypted machine code and secure computation over encrypted data.

In the presented case study, we choose addleq as the OISC instruction and Paillier’s scheme for encryption, and we extensively discuss the architecture and security implications of encrypting the instructions and memory accesses. Preliminary results in our implemented hardware–cognizant software simulator indicate an average execution overhead of 26 times for 1024–bit security parameter, compared to unencrypted execution of the same OISC programs.


Encrypted processor homomorphic encryption Paillier cloud computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order preserving encryption for numeric data. In: Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, pp. 563–574. ACM (2004)Google Scholar
  2. 2.
    Blum, T., Paar, C.: Montgomery modular exponentiation on reconfigurable hardware. In: Proceedings of the 14th IEEE Symposium on Computer Arithmetic, pp. 70–77. IEEE (1999)Google Scholar
  3. 3.
    Boneh, D., Joux, A., Nguyen, P.Q.: Why textbook ElGamal and RSA encryption are insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)Google Scholar
  5. 5.
    Brenner, M., Wiebelitz, J., von Voigt, G., Smith, M.: Secret program execution in the cloud applying homomorphic encryption. In: Proceedings of the 5th IEEE International Conference on Digital Ecosystems and Technologies Conference (DEST), pp. 114–119. IEEE (2011)Google Scholar
  6. 6.
    Breuer, P.T., Bowen, J.P.: Typed assembler for a RISC crypto-processor. In: Barthe, G., Livshits, B., Scandariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 22–29. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A secure and optimally efficient multi-authority election scheme. European Transactions on Telecommunications 8(5), 481–490 (1997)CrossRefGoogle Scholar
  9. 9.
    Daly, A., Marnane, W.: Efficient architectures for implementing montgomery modular multiplication and RSA modular exponentiation on reconfigurable logic. In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on Field-Programmable Gate Arrays, pp. 40–49. ACM (2002)Google Scholar
  10. 10.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Esolangs: Addleq Turing complete OISC language,
  12. 12.
    Esolangs: One Instruction Set Computer,
  13. 13.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive, 2012 144 (2012)Google Scholar
  14. 14.
    Fontaine, C., Galand, F.: A survey of homomorphic encryption for nonspecialists. EURASIP Journal on Information Security 2007 (2007)Google Scholar
  15. 15.
    Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University (2009)Google Scholar
  16. 16.
    Gentry, C.: Fully homomorphic encryption using ideal lattices (2009)Google Scholar
  17. 17.
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377. ACM (1982)Google Scholar
  18. 18.
    Halevi, S., Shoup, V.: Design and implementation of a homomorphic-encryption library (2012)Google Scholar
  19. 19.
    Hennessy, J.L., Patterson, D.A.: Computer architecture: a quantitative approach, pp. 72, 96–101. Elsevier (2012)Google Scholar
  20. 20.
    Hoe, D.H., Martinez, C., Vundavalli, S.J.: Design and characterization of parallel prefix adders using FPGAs. In: 2011 IEEE 43rd South eastern Symposium on System Theory (SSST), pp. 168–172. IEEE (2011)Google Scholar
  21. 21.
    Ivanov, M.: Pure Python Paillier homomorphic cryptosystem (2011),
  22. 22.
    Jones, D.W.: The ultimate RISC. ACM SIGARCH Computer Architecture News 16(3), 48–55 (1988)CrossRefGoogle Scholar
  23. 23.
    Katz, J., Lindell, Y.: Introduction to modern cryptography. CRC Press (2008)Google Scholar
  24. 24.
    Lange, A.: An overview of homomorphic encryption (2011),
  25. 25.
    Mavaddat, F., Parhami, B.: URISC: the ultimate reduced instruction set computer. Faculty of Mathematics. University of Waterloo (1987)Google Scholar
  26. 26.
    Mazonka, O., Kolodin, A.: A simple multi-processor computer based on subleq. arXiv preprint arXiv:1106.2593 (2011)Google Scholar
  27. 27.
    Mazonka, O.: Addleq (2009),
  28. 28.
    Mclvor, C., McLoone, M., McCanny, J.V.: Fast Montgomery modular multiplication and RSA cryptographic processor architectures. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 379–384. IEEE (2003)Google Scholar
  29. 29.
    Montgomery, P.L.: Modular multiplication without trial division. Mathematics of Computation 44(170), 519–521 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Parann-Nissany, G.: The holy grail of cloud computing – maintaining data confidentiality (2012),
  32. 32.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Schneier, B.: Homomorphic encryption breakthrough (2009),
  34. 34.
    Simonite, T.: Computing with secrets, but keeping them safe (2010),
  35. 35.
    Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 377–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Stuntz, C.: What is homomorphic encryption, and why should I care? (2010),
  37. 37.
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Computer Science and EngineeringNew York University Polytechnic School of EngineeringNew York CityUSA
  2. 2.Electrical and Computer EngineeringNew York University Abu DhabiAbu DhabiUAE

Personalised recommendations