Skip to main content

Cone Arrestin: Deciphering the Structure and Functions of Arrestin 4 in Vision

  • Chapter
  • First Online:
Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

Cone arrestin (Arr4) was discovered 20 years ago as a human X-chromosomal gene that is highly expressed in pinealocytes and cone photoreceptors. Subsequently, specific antibodies were developed to identify Arr4 and to distinguish cone photoreceptor morphology in health and disease states. These reagents were used to demonstrate Arr4 translocation from cone inner segments in the dark to outer segments with light stimulation, similarly to Arrestin 1 (Arr1) translocation in rod photoreceptors. A decade later, the Arr4 crystal structure was solved, which provided more clues about Arr4’s mechanisms of action. With the creation of genetically engineered visual arrestin knockout mice, one critical function of Arr4 was clarified. In single living cones, both visual arrestins bind to light-activated, G protein receptor kinase 1 (Grk1) phosphorylated cone opsins to desensitize them, and in their absence, mouse cone pigment shutoff is delayed. Still under investigation are additional functions; however, it is clear that Arr4 has non-opsin-binding partners and diverse synaptic roles, including cellular anchoring and trafficking. Recent studies reveal Arr4 is involved in high temporal resolution and contrast sensitivity, which opens up a new direction for research on this intriguing protein. Even more exciting is the potential for therapeutic use of the Arr4 promoter with an AAV-halorhodopsin that was shown to be effective in using the remaining cones in retinal degeneration mouse models to drive inner retinal circuitry for motion detection and light/dark discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Systematic names of arrestin proteins: Arrestin-1 (historic names S-antigen, 48 kDa protein, visual or rod arrestin), Arrestin-2 (β-arrestin1 or ARRB1), Arrestin-3 (β-arrestin2, hTHY-ARRX or ARRB2), and Arrestin-4 (cone or X-arrestin; its human gene is designated “Arrestin 3” (ARR3) in the HUGO nomenclature database).

References

  • Albini TA, Rao NA, Li A, Craft CM, Fujii GY, de Juan E Jr (2004) Limited macular translocation: a clinicopathologic case report. Ophthalmology 111:1209–1214

    Article  PubMed  Google Scholar 

  • Alvarez CE (2008) On the origins of arrestin and rhodopsin. BMC Evol Biol 8:222

    Article  PubMed Central  PubMed  Google Scholar 

  • Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, Snyder SH, Caron MG, Lefkowitz RJ (1992) Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267:17882–17890

    CAS  PubMed  Google Scholar 

  • Brown BM, Ramirez T, Rife L, Craft CM (2010) Visual Arrestin 1 contributes to cone photoreceptor survival and light adaptation. Invest Ophthalmol Vis Sci 51:2372–2380

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown BM, Kim M, Aung M, Rife L, Pardue M, Craft C (2012) Abnormal photopic ERG responses and defective contrast sensitivity in cone arrestin 4 knockout mice reveal potential regulatory functions. Invest Ophthalmol Vis Sci, ARVO E-Abstract 759

    Google Scholar 

  • Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S, Groner AC, Cabuy E, Vr F, Seeliger M, Biel M, Humphries P, Paques M, Mohand-Said S, Trono D, Deisseroth K, Sahel JA, Picaud S, Roska B (2010) Genetic reactivation of cone photoreceptors restores visual responses in Retinitis Pigmentosa. Science 329:413–417

    Article  CAS  PubMed  Google Scholar 

  • Cepko CL (2012) Emerging gene therapies for retinal degenerations. J Neurosci 32:6415–6420

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan S, Rubin WW, Mendez A, Liu X, Song X, Hanson SM, Craft CM, Gurevich VV, Burns ME, Chen J (2007) Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice. Invest Ophthalmol Vis Sci 48:1968–1975

    Article  PubMed Central  PubMed  Google Scholar 

  • Coleman JE, Semple-Rowland SL (2005) GC1 deletion prevents light-dependent arrestin translocation in mouse cone photoreceptor cells. Invest Ophthalmol Vis Sci 46:12–16

    Article  PubMed  Google Scholar 

  • Craft CM, Whitmore DH (1995) The arrestin superfamily: cone arrestins are a fourth family. FEBS Lett 362:247–255

    Article  CAS  PubMed  Google Scholar 

  • Craft CM, Whitmore DH, Donoso LA (1990) Differential expression of mRNA and protein encoding retinal and pineal S-antigen during the light/dark cycle. J Neurochem 55:1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Craft CM, Whitmore DH, Wiechmann AF (1994) Cone arrestin identified by targeting expression of a functional family. J Biol Chem 269:4613–4619

    CAS  PubMed  Google Scholar 

  • Craft CM, Huang J, Possin D, Hendrickson A (2013) Primate short-wavelength cones share molecular markers with rods. In: Ash J, Hollyfield JG, LaVail MM, Anderson RE, Grimm C, Bowes Rickman C (eds) Retinal degenerative diseases. Springer, Heidelberg, Chapter 7

    Google Scholar 

  • Deming JD, Lim K, Brown BM, Pak JS, Van Cranenbroeck K, Craft CM (2013) Interactions between dopamine receptor D4 and visual arrestins. Invest Ophthalmol Vis Sci, ARVO E-Abstract 2452

    Google Scholar 

  • Fujimaki T, Huang ZY, Kitagawa H, Sakuma H, Murakami A, Kanai A, McLaren MJ, Inana G (2004) Truncation and mutagenesis analysis of the human X-arrestin gene promoter. Gene 339:139–147

    Article  CAS  PubMed  Google Scholar 

  • Gurevich EV, Gurevich VV (2006) Arrestins: ubiquitous regulators of cellular signaling pathways. Genome Biol 7:236

    Article  PubMed Central  PubMed  Google Scholar 

  • Haire SE, Pang J, Boye SL, Sokal I, Craft CM, Palczewski K, Hauswirth WW, Semple-Rowland SL (2006) Light-Driven Cone Arrestin translocation in cones of postnatal Guanylate Cyclase-1 knockout mouse retina treated with AAV-GC1. Invest Ophthalmol Vis Sci 47:3745–3753

    Article  PubMed Central  PubMed  Google Scholar 

  • Haverkamp S, Wassle H, Duebel J, Kuner T, Augustine GJ, Feng G, Euler T (2005) The primordial, blue-cone color system of the mouse retina. J Neurosci 25:5438–5445

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Orii H, Nakagawa M (2005) Structure of ocellus photoreceptors in the ascidian Ciona intestinalis larva as revealed by an anti-arrestin antibody. J Neurobiol 65:241–250

    Article  CAS  PubMed  Google Scholar 

  • Huang SP, Brown BM, Craft CM (2010) Visual Arrestin 1 acts as a modulator for N-Ethylmaleimide-sensitive factor in the photoreceptor synapse. J Neurosci 30:9381–9391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang L, Szymanska K, Jensen VL, Janecke AR, Innes AM, Davis EE, Frosk P, Li C, Willer JR, Chodirker BN, Greenberg CR, McLeod DR, Bernier FP, Chudley AE, Muller T, Shboul M, Logan CV, Loucks CM, Beaulieu CL, Bowie RV, Bell SM, Adkins J, Zuniga FI, Ross KD, Wang J, Ban MR, Becker C, Nurnberg P, Douglas S, Craft CM, Akimenko MA, Hegele RA, Ober C, Utermann G, Bolz HJ, Bulman DE, Katsanis N, Blacque OE, Doherty D, Parboosingh JS, Leroux MR, Johnson CA, Boycott KM (2011) TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 89:713–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinformatics 8:460

    Article  PubMed Central  PubMed  Google Scholar 

  • Imanishi Y, Hisatomi O, Tokunaga F (1999) Two types of arrestins expressed in medaka rod photoreceptors. FEBS Lett 462:31–36

    Article  CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517

    Article  CAS  PubMed  Google Scholar 

  • Li A, Zhu X, Craft CM (2002) Retinoic acid upregulates cone arrestin expression in retinoblastoma cells through a Cis element in the distal promoter region. Invest Ophthalmol Vis Sci 43:1375–1383

    PubMed  Google Scholar 

  • Li A, Zhu X, Brown B, Craft CM (2003) Gene expression networks underlying retinoic acid-induced differentiation of human retinoblastoma cells. Invest Ophthalmol Vis Sci 44:996–1007

    Article  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    Article  CAS  PubMed  Google Scholar 

  • Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A (2001) Nrl is required for rod photoreceptor development. Nat Genet 29:447–452

    Article  CAS  PubMed  Google Scholar 

  • Murakami A, Yajima T, Sakuma H, McLaren MJ, Inana G (1993) X-arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 334:203–209

    Article  CAS  PubMed  Google Scholar 

  • Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr (2006) Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. J Gen Physiol 127:359–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Nikonov SS, Brown BM, Davis JA, Zuniga FI, Bragin A, Pugh EN Jr, Craft CM (2008) Mouse cones require an arrestin for normal inactivation of phototransduction. Neuron 59:462–474 and Supplement

    Google Scholar 

  • Nir I, Ransom N (1992) S-antigen in rods and cones of the primate retina: different labeling patterns are revealed with antibodies directed against specific domains in the molecule. J Histochem Cytochem 40:343–352

    Article  CAS  PubMed  Google Scholar 

  • Pickrell SW, Zhu X, Wang X, Craft CM (2004) Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression. Invest Ophthalmol Vis Sci 45:3877–3884

    Article  PubMed  Google Scholar 

  • Renninger SL, Gesemann M, Neuhauss SCF (2011) Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae. Eur J Neurosci 33:658–667

    Article  PubMed  Google Scholar 

  • Sakuma H, Murakami A, Fujimaki T, Inana G (1998) Isolation and characterization of the human X-arrestin gene. Gene 224:87–95

    Article  CAS  PubMed  Google Scholar 

  • Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Dietzschold B, Craft CM, Wistow G, Early JJ, Donoso LA, Horwitz J, Tao R (1987) Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Natl Acad Sci USA 84:6975–6979

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith WC, Gurevich EV, Dugger DR, Vishnivetshkiy SA, Shelamer CL, McDowell JH, Gurevich VV (2000) Cloning and functional characterization of salamander rod and cone arrestins. Invest Ophthalmol Vis Sci 41:2445–2455

    CAS  PubMed  Google Scholar 

  • Song X, Gurevich EVE, Gurevich VVV (2007) Cone arrestin binding to JNK3 and Mdm2: conformation preference and localization of interaction sites. J Neurochem 103:1053–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutton RB, Vishnivetskiy S, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV (2005) Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity. J Mol Biol 354:1069–1080

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Fujita H, Katoh H, Mori K, Negishi M (2002) Vps4-A (vacuolar protein sorting 4-A) is a binding partner for a novel Rho family GTPase, Rnd2. Biochem J 365:349–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Testa F, Maguire AM, Rossi S, Pierce EA, Melillo P, Marshall K, Banfi S, Surace EM, Sun J, Acerra C, Wright JF, Wellman J, High KA, Auricchio A, Bennett J, Simonelli F (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber Congenital Amaurosis type 2. Ophthalmology 120(6):1283–1291

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Whelan JP, McGinnis JF (1988) Light-dependent subcellular movement of photoreceptor proteins. J Neurosci Res 20:263–270

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR III, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 104:12011–12016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu J, Lei K, Zhou M, Craft CM, Xu G, Xu T, Zhuang Y, Xu R, Han M (2011) KASH protein Syne-2/Nesprin-2 and SUN proteins SUN1/2 mediate nuclear migration during mammalian retinal development. Hum Mol Genet 20:1061–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Y, Li A, Zhu X, Wong CH, Brown B, Craft CM (2001) Cone arrestin expression and induction in retinoblastoma cells. In: Anderson RE, LaVail MM, Hollyfield JG (eds) Retinal degeneration diseases and experimental therapy. Kluwer Academic/Plenum, Durango, CO, pp 309–317

    Google Scholar 

  • Zhang H, Cuenca N, Ivanova T, Church-Kopish J, Frederick JM, MacLeish PR, Baehr W (2003a) Identification and light-dependent translocation of a cone-specific antigen, Cone Arrestin, recognized by monoclonal antibody 7G6. Invest Ophthalmol Vis Sci 44:2858–2867

    Article  PubMed  Google Scholar 

  • Zhang H, Huang W, Zhang H, Zhu X, Craft CM, Baehr W, Chen CK (2003b) Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction. Mol Vis 9:231–237

    CAS  PubMed  Google Scholar 

  • Zhang J, Gray J, Wu L, Leone G, Rowan S, Cepko CL, Zhu X, Craft CM, Dyer MA (2004) Rb regulates proliferation and rod photoreceptor development in the mouse retina. Nat Genet 36:351–360

    Article  PubMed  Google Scholar 

  • Zhu X, Li A, Brown B, Weiss ER, Osawa S, Craft CM (2002a) Mouse cone arrestin expression pattern: light induced translocation in cone photoreceptors. Mol Vis 8:462–471

    CAS  PubMed  Google Scholar 

  • Zhu X, Ma B, Babu S, Murage J, Knox BE, Craft CM (2002b) Mouse cone arrestin gene characterization: promoter targets expression to cone photoreceptors. FEBS Lett 524:116–122

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Brown B, Li A, Mears AJ, Swaroop A, Craft CM (2003) GRK1-dependent phosphorylation of S and M opsins and their binding to cone arrestin during cone phototransduction in the mouse retina. J Neurosci 23:6152–6160

    CAS  PubMed  Google Scholar 

  • Zhu X, Wu K, Rife L, Brown B, Craft CM (2005) Rod Arrestin expression and function in cone photoreceptors. Invest Ophthalmol Vis Sci, ARVO E-Abstract 46

    Google Scholar 

  • Zuniga FI (2010) Identification of novel protein-protein interactions and functional analysis in the mouse photoreceptor of the hypothetical protein FLJ33282-ALS2CR4 and the small Rho GTPase, Rnd2. Doctoral dissertation

    Google Scholar 

  • Zuniga FI, Craft CM (2010) Deciphering the structure and function of Als2cr4 in the mouse retina. Invest Ophthalmol Vis Sci 51:4407–4415

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Dr. Craft is the Mary D. Allen Chair in Vision Research, Doheny Eye Institute (DEI). This work was supported, in part, by EY015851 (CMC), Core grant EY03040 (DEI), Research to Prevent Blindness, Dorie Miller (JDD), Tony Gray Foundation (JDD), William Hansen Sandberg Memorial Foundation (JDD). We wish to dedicate this chapter in memory of Stephen J. Ryan, M.D. for his lifelong commitment to DEI, ophthalmology and our vision research program. We thank Bruce M. Brown for 40 years of outstanding contributions to vision research, plus the members of the Mary D. Allen Laboratory for Vision Research, DEI, our collaborators and colleagues for their contributions in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheryl Mae Craft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Craft, C.M., Deming, J.D. (2014). Cone Arrestin: Deciphering the Structure and Functions of Arrestin 4 in Vision. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_6

Download citation

Publish with us

Policies and ethics