Skip to main content

Molecular Mechanisms Underlying Beta-Arrestin-Dependent Chemotaxis and Actin-Cytoskeletal Reorganization

  • Chapter
  • First Online:
Book cover Arrestins - Pharmacology and Therapeutic Potential

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 219))

Abstract

β-Arrestins play a crucial role in cell migration downstream of multiple G-protein-coupled receptors (GPCRs) through multiple mechanisms. There is considerable evidence that β-arrestin-dependent scaffolding of actin assembly proteins facilitates the formation of a leading edge in response to a chemotactic signal. Conversely, there is substantial support for the hypothesis that β-arrestins facilitate receptor turnover through their ability to desensitize and internalize GPCRs. This chapter discusses both theories for β-arrestin-dependent chemotaxis in the context of recent studies, specifically addressing known actin assembly proteins regulated by β-arrestins, chemokine receptors, and signaling by chemotactic receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anthony DF, Sin YY, Vadrevu S, Advant N, Day JP, Byrne AM, Lynch MJ, Milligan G, Houslay MD, Baillie GS (2011) {beta}-Arrestin 1 inhibits the GTPase-activating protein function of ARHGAP21, promoting activation of RhoA following angiotensin II type 1A receptor stimulation. Mol Cell Biol 31:1066–1075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bardi G, Lipp M, Baggiolini M, Loetscher P (2001) The T cell chemokine receptor CCR7 is internalized on stimulation with ELC, but not with SLC. Eur J Immunol 31:3291–3297

    Article  CAS  PubMed  Google Scholar 

  • Barlic J, Khandaker MH, Mahon E, Andrews J, DeVries ME, Mitchell GB, Rahimpour R, Tan CM, Ferguson SS, Kelvin DJ (1999) beta-Arrestins regulate interleukin-8-induced CXCR1 internalization. J Biol Chem 274:16287–16294

    Article  CAS  PubMed  Google Scholar 

  • Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T, Feldman RD, Ferguson SS, Kelvin DJ (2000) Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 1:227–233

    Article  CAS  PubMed  Google Scholar 

  • Barnes WG, Reiter E, Violin JD, Ren X-R, Milligan G, Lefkowitz RJ (2005) β-Arrestin 1 and Gαq/11 coordinately activate RhoA and stress fiber formation following receptor stimulation. J Biol Chem 280:8041–8050

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya M, Anborgh PH, Babwah AV, Dale LB, Dobransky T, Benovic JL, Feldman RD, Verdi JM, Rylett RJ, Ferguson SSG (2002) [beta]-Arrestins regulate a Ral-GDS-Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 4:547–555

    CAS  PubMed  Google Scholar 

  • Bhattacharya M, Wang J, Ribeiro FM, Dixon SJ, Feldman RD, Hegele RA, Ferguson SSG (2006) Analysis of a missense variant of the human N-formyl peptide receptor that is associated with agonist-independent [beta]-arrestin association and indices of inflammation. Pharmacogenomics J 7:190–199

    Article  PubMed  Google Scholar 

  • Bouschet T, Sp M, Kanamarlapudi V, Mundell S, Henley JM (2007) The calcium-sensing receptor changes cell shape via a β-arrestin-1‚ ARNO, ARF6, ELMO protein network. J Cell Sci 120:2489–2497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Byers MA, Calloway PA, Shannon L, Cunningham HD, Smith S, Li F, Fassold BC, Vines CM (2008) Arrestin 3 mediates endocytosis of CCR7 following ligation of CCL19 but not CCL21. J Immunol 181:4723–4732

    CAS  PubMed  Google Scholar 

  • Campellone KG, Welch MD (2010) A nucleator arms race: cellular control of actin assembly. Nat Rev Mol Cell Biol 11:237–251

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chellaiah MA, Kuppuswamy D, Lasky L, Linder S (2007) Phosphorylation of a Wiscott-Aldrich syndrome protein-associated signal complex is critical in osteoclast bone resorption. J Biol Chem 282:10104–10116

    Article  CAS  PubMed  Google Scholar 

  • Cheung R, Malik M, Ravyn V, Tomkowicz B, Ptasznik A, Collman RG (2009) An arrestin-dependent multi-kinase signaling complex mediates MIP-1 beta/CCL4 signaling and chemotaxis of primary human macrophages. J Leukoc Biol 86:833–845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cho EY, Cho DI, Park JH, Kurose H, Caron MG, Kim KM (2007) Roles of protein kinase C and actin-binding protein 280 in the regulation of intracellular trafficking of dopamine D3 receptor. Mol Endocrinol 21:2242–2254

    Article  CAS  PubMed  Google Scholar 

  • Christensen GL, Kelstrup CD, Lyngsø C, Sarwar U, Bøgebo R, Sheikh SP, Gammeltoft S, Olsen JV, Hansen JL (2010) Quantitative phosphoproteomics dissection of 7TM receptor signaling using full and biased agonists. Mol Cell Proteomics 9:1540–1553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Décaillot FM, Kazmi MA, Lin Y, Ray-Saha S, Sakmar TP, Sachdev P (2011) CXCR7/CXCR4 heterodimer constitutively recruits β-arrestin to enhance cell migration. J Biol Chem 286:32188–32197

    Article  PubMed Central  PubMed  Google Scholar 

  • DeFea KA (2007) Stop that cell! Beta-arrestin-dependent chemotaxis: a tale of localized actin assembly and receptor desensitization. Annu Rev Physiol 69:535–560

    Article  CAS  PubMed  Google Scholar 

  • DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW (2000) beta-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK (2007) Beta-arrestins and cell signaling. Annu Rev Physiol 69:483–510

    Article  CAS  PubMed  Google Scholar 

  • Drury LJ, Ziarek JJ, Gravel S, Veldkamp CT, Takekoshi T, Hwang ST, Heveker N, Volkman BF, Dwinell MB (2011) Monomeric and dimeric CXCL12 inhibit metastasis through distinct CXCR4 interactions and signaling pathways. Proc Natl Acad Sci USA 108:17655–17660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan HK, Bitto A, Zingarelli B, Luttrell LM, Borg K, Halushka PV, Cook JA (2010) Beta-arrestin 2 negatively regulates sepsis-induced inflammation. Immunology 130:344–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Firat-Karalar EN, Welch MD (2011) New mechanisms and functions of actin nucleation. Curr Opin Cell Biol 23:4–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fong AM, Premont RT, Richardson RM, Yu YRA, Lefkowitz RJ, Patel DD (2002) Defective lymphocyte chemotaxis in beta-arresting2-and GRK6-deficient mice. Proc Natl Acad Sci USA 99:7478–7483

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge L, Ly Y, Hollenberg M, DeFea K (2003) A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem 278:34418–34426

    Article  CAS  PubMed  Google Scholar 

  • Ge L, Shenoy SK, Lefkowitz RJ, DeFea K (2004) Constitutive protease-activated receptor-2-mediated migration of MDA MB-231 breast cancer cells requires both beta-arrestin-1 and -2. J Biol Chem 279:55419–55424

    Article  CAS  PubMed  Google Scholar 

  • Gong K, Li Z, Xu M, Du J, Lv Z, Zhang Y (2008) A novel protein kinase A-independent, beta-arrestin-1-dependent signaling pathway for p38 mitogen-activated protein kinase activation by beta2-adrenergic receptors. J Biol Chem 283:29028–29036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    Article  CAS  PubMed  Google Scholar 

  • Guinamard R, Aspenstrom P, Fougereau M, Chavrier P, Guillemot JC (1998) Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett 434:431–436

    Article  CAS  PubMed  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  CAS  PubMed  Google Scholar 

  • Hollingsworth JW, Theriot BS, Li Z, Lawson BL, Sunday M, Schwartz DA, Walker JK (2010) Both hematopoietic-derived and non-hematopoietic-derived {beta}-arrestin-2 regulates murine allergic airway disease. Am J Respir Cell Mol Biol 43:269–275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hunton DL, Barnes WG, Kim J, Ren XR, Violin JD, Reiter E, Milligan G, Patel DD, Lefkowitz RJ (2005) Beta-arrestin 2-dependent angiotensin II type 1A receptor-mediated pathway of chemotaxis. Mol Pharmacol 67:1229–1236

    Article  CAS  PubMed  Google Scholar 

  • Iglesias PA, Devreotes PN (2008) Navigating through models of chemotaxis. Curr Opin Cell Biol 20:35–40

    Article  CAS  PubMed  Google Scholar 

  • Kim H, McCulloch CA (2011) Filamin A mediates interactions between cytoskeletal proteins that control cell adhesion. FEBS Lett 585:18–22

    Article  CAS  PubMed  Google Scholar 

  • Kim KM, Gainetdinov RR, Laporte SA, Caron MG, Barak LS (2005) G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex. A case of autoreceptor regulation. J Biol Chem 280:12774–12780

    Article  CAS  PubMed  Google Scholar 

  • Kim JI, Lakshmikanthan V, Frilot N, Daaka Y (2010) Prostaglandin E2 promotes lung cancer cell migration via EP4-βArrestin1-c-Src signalsome. Mol Cancer Res 8:569–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohout TA, Nicholas SL, Perry SJ, Reinhart G, Junger S, Struthers RS (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222

    Article  CAS  PubMed  Google Scholar 

  • Kraft K, Olbrich H, Majoul I, Mack M, Proudfoot A, Oppermann M (2001) Characterization of sequence determinants within the carboxyl-terminal domain of chemokine receptor CCR5 that regulate signaling and receptor internalization. J Biol Chem 276:34408–34418

    Article  CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SG, Caron MG, Barak LS (1999) The 2-adrenergic receptor/arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96:3712–3717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li TT, Alemayehu M, Aziziyeh AI, Pape C, Pampillo M, Postovit LM, Mills GB, Babwah AV, Bhattacharya M (2009) Beta-arrestin/Ral signaling regulates lysophosphatidic acid-mediated migration and invasion of human breast tumor cells. Mol Cancer Res 7:1064–1077

    Article  CAS  PubMed  Google Scholar 

  • Lovgren AK, Kovacs JJ, Xie T, Potts EN, Li Y, Foster WM, Liang J, Meltzer EB, Jiang D, Lefkowitz RJ, Noble PW (2011) β-Arrestin deficiency protects against pulmonary fibrosis in mice and prevents fibroblast invasion of extracellular matrix. Sci Transl Med 3:74ra23

    Google Scholar 

  • Luttrell LM, Gesty-Palmer D (2010) Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev 62:305–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Malik R, Marchese A (2010) Arrestin-2 interacts with the endosomal sorting complex required for transport machinery to modulate endosomal sorting of CXCR4. Mol Biol Cell 21:2529–2541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mendoza Michelle C, Er EE, Zhang W, Ballif Bryan A, Elliott Hunter L, Danuser G, Blenis J (2011) ERK-MAPK drives lamellipodia protrusion by activating the WAVE2 regulatory complex. Mol Cell 41:661–671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Min J, Defea K (2011) beta-Arrestin-dependent actin reorganization: bringing the right players together at the leading edge. Mol Pharmacol 80:760–768

    Article  CAS  PubMed  Google Scholar 

  • Mouneimne G, Soon L, DesMarais V, Sidani M, Song X, Yip S-C, Ghosh M, Eddy R, Backer JM, Condeelis J (2004) Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol 166:697–708

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mythreye K, Blobe GC (2009a) The type III TGFbeta receptor regulates directional migration: new tricks for an old dog. Cell Cycle 8:3069–3070

    Article  CAS  PubMed  Google Scholar 

  • Mythreye K, Blobe GC (2009b) The type III TGF-beta receptor regulates epithelial and cancer cell migration through beta-arrestin2-mediated activation of Cdc42. Proc Natl Acad Sci USA 106:8221–8226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nichols HL, Saffeddine M, Theriot BS, Hegde A, Polley D, El-Mays T, Vliagoftis H, Hollenberg MD, Wilson EH, Walker JK, DeFea KA (2012) β-Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proc Natl Acad Sci USA 109(41):16660–16665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta Y, Suzuki N, Nakamura S, Hartwig JH, Stossel TP (1999) The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci USA 96:2122–2128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oser M, Condeelis J (2009) The cofilin activity cycle in lamellipodia and invadopodia. J Cell Biochem 108:1252–1262

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ott TR, Pahuja A, Nickolls SA, Alleva DG, Struthers RS (2004) Identification of CC chemokine receptor 7 residues important for receptor activation. J Biol Chem 279:42383–42392

    Article  CAS  PubMed  Google Scholar 

  • Parisis N, Metodieva G, Metodiev MV (2013) Pseudopodial and beta-arrestin-interacting proteomes from migrating breast cancer cells upon PAR2 activation. J Proteome 80:91–106

    Article  CAS  Google Scholar 

  • Pontrello CG, Sun MY, Lin A, Fiacco TA, DeFea KA, Ethell IM (2012) Cofilin under control of beta-arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proc Natl Acad Sci USA 109:E442–E451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Povsic TJ, Kohout TA, Lefkowitz RJ (2003) Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278:51334–51339

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Kim J, Ahn S, Craig S, Lam CM, Gerard NP, Gerard C, Lefkowitz RJ (2010) Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc Natl Acad Sci USA 107:628–632

    Article  PubMed Central  PubMed  Google Scholar 

  • Richardson RM, Marjoram RJ, Barak LS, Snyderman R (2003) Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J Immunol 170:2904–2911

    CAS  PubMed  Google Scholar 

  • Scott MG, Pierotti V, Storez H, Lindberg E, Thuret A, Muntaner O, Labbe-Jullie C, Pitcher JA, Marullo S (2006) Cooperative regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and beta-arrestins. Mol Cell Biol 26:3432–3445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2011) beta-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Su YJ, Raghuwanshi SK, Yu YC, Nanney LB, Richardson RM, Richmond A (2005) Altered CXCR2 signaling in beta-arrestin-2-deficient mouse models. J Immunol 175:5396–5402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sullivan SK, McGrath DA, Grigoriadis D, Bacon KB (1999) Pharmacological and signaling analysis of human chemokine receptor CCR-7 stably expressed in HEK-293 cells: high-affinity binding of recombinant ligands MIP-3beta and SLC stimulates multiple signaling cascades. Biochem Biophys Res Commun 263:685–690

    Article  CAS  PubMed  Google Scholar 

  • Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436

    Article  CAS  PubMed  Google Scholar 

  • Walker JK, Fong AM, Lawson BL, Savov JD, Patel DD, Schwartz DA, Lefkowitz RJ (2003) Beta-arrestin-2 regulates the development of allergic asthma. J Clin Invest 112:566–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang P, DeFea KA (2006) Protease-activated receptor-2 simultaneously directs beta-arrestin-1-dependent inhibition and Galphaq-dependent activation of phosphatidylinositol 3-kinase. Biochemistry 45:9374–9385

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7:429–440

    Article  CAS  PubMed  Google Scholar 

  • Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ (2007) Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Proc Natl Acad Sci USA 104:12011–12016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villen J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma’ayan A, Gygi SP, Lefkowitz RJ (2010) Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Proc Natl Acad Sci USA 107:15299–15304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida R, Nagira M, Kitaura M, Imagawa N, Imai T, Yoshie O (1998) Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. J Biol Chem 273:7118–7122

    Article  CAS  PubMed  Google Scholar 

  • Zabel BA, Wang Y, Lewén S, Berahovich RD, Penfold MET, Zhang P, Powers J, Summers BC, Miao Z, Zhao B, Jalili A, Janowska-Wieczorek A, Jaen JC, Schall TJ (2009) Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J Immunol 183:3204–3211

    Article  CAS  PubMed  Google Scholar 

  • Zidar DA, Violin JD, Whalen EJ, Lefkowitz RJ (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA 106:9649–9654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zoudilova M, Kumar P, Ge L, Wang P, Bokoch GM, DeFea KA (2007) Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 282:20634–20646

    Article  CAS  PubMed  Google Scholar 

  • Zoudilova M, Min J, Richards HL, Carter D, Huang T, DeFea KA (2010) beta-Arrestins scaffold cofilin with chronophin to direct localized actin filament severing and membrane protrusions downstream of protease-activated receptor-2. J Biol Chem 285:14318–14329

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn A. DeFea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McGovern, K.W., DeFea, K.A. (2014). Molecular Mechanisms Underlying Beta-Arrestin-Dependent Chemotaxis and Actin-Cytoskeletal Reorganization. In: Gurevich, V. (eds) Arrestins - Pharmacology and Therapeutic Potential. Handbook of Experimental Pharmacology, vol 219. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41199-1_17

Download citation

Publish with us

Policies and ethics