Cytopathology of Asbestos-Associated Diseases

  • Frank SchneiderEmail author
  • Thomas A. Sporn


Asbestos is the generic term typically used for six naturally occurring fibrous silicates that are or have been exploited commercially: the serpentine chrysotile and the amphiboles amosite, crocidolite, anthophyllite, tremolite, and actinolite [1].


Small Cell Carcinoma Aspiration Biopsy Malignant Mesothelioma Malignant Pleural Effusion Asbestos Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Virta R, U.S.G. Survey (ed) (2002) Asbestos: geology, mineralogy, mining, and uses. Wiley-Interscience, New YorkGoogle Scholar
  2. 2.
    U.S. Geological Survey (2011) Mineral commodity summaries: U.S. Geological Survey, p198Google Scholar
  3. 3.
    Virta R, U.S. Dept. of the Interior (ed) (2006) Worldwide asbestos supply and consumption trends from 1900 through 2003: U.S. Geological Survey Circular 1298. U.S. Geological Survey, Reston, p 5Google Scholar
  4. 4.
    Prohibition of the Manufacture, Importation, Processing, and Distribution in Commerce of Certain Asbestos-Containing Products; Labeling Requirements, 40 Federal Register 763 Subpart I, Sec. 762.160–763.179Google Scholar
  5. 5.
    Greenberg S et al (1976) Tyler asbestos workers program. Ann N Y Acad Sci 271:353–364PubMedCrossRefGoogle Scholar
  6. 6.
    Morgan A, Holmes A (1985) The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res 38:283–292PubMedCrossRefGoogle Scholar
  7. 7.
    Haque A, Kanz M (1988) Asbestos bodies in children’s lungs: an association with sudden infant death syndrome and bronchopulmonary dysplasia. Arch Pathol Lab Med 112:514–518PubMedGoogle Scholar
  8. 8.
    Roggli VL et al (1980) Comparison of sputum and lung asbestos body counts in former asbestos workers. Am Rev Respir Dis 122(6):941–945PubMedGoogle Scholar
  9. 9.
    Roggli V et al (1980) Pulmonary fibrosis, carcinoma and asbestos body counts in amosite asbestos workers. Am J Clin Pathol 73:496–503PubMedCrossRefGoogle Scholar
  10. 10.
    Churg A, Warnock M (1981) Asbestos and other ferruginous bodies: their formation and clinical significance. Am J Pathol 102:447–456PubMedPubMedCentralGoogle Scholar
  11. 11.
    Stewart M, Haddow A (1929) Demonstration of the peculiar bodies of pulmonary asbestosis in material obtained by lung puncture and in the sputum. J Pathol Bacteriol 32:172CrossRefGoogle Scholar
  12. 12.
    An S, Koprowska I (1962) Primary cytologic diagnosis of asbestosis associated with bronchogenic carcinoma: case report and review of the literature. Acta Cytol 6:391–398PubMedGoogle Scholar
  13. 13.
    Huuskonen M, Taskinen E, Vaaranen V (1978) Sputum cytology of asbestosis patients. Scand J Work Environ Health 4:284–294PubMedCrossRefGoogle Scholar
  14. 14.
    Gupta P, Frost J (1981) Cytologic changes associated with asbestos exposure. Semin Oncol 8:283–289PubMedGoogle Scholar
  15. 15.
    Kotin P, Paul W (1982) Results of a lung cancer detection program in an asbestos industry. Recent Results Cancer Res 82:131–137PubMedCrossRefGoogle Scholar
  16. 16.
    Dodson R et al (1983) Asbestos bodies and particulate matter in sputum from former asbestos workers: an Ultrastructural study. Acta Cytol 27:635–640PubMedGoogle Scholar
  17. 17.
    Kobusch A et al (1984) Pulmonary cytology in chrysotile asbestos workers. J Chronic Dis 37:599–607PubMedCrossRefGoogle Scholar
  18. 18.
    Paris C et al (2002) Asbestos bodies in the sputum of asbestos workers: correlation with occupational exposure. Eur Respir J 20(5):1167–1173PubMedCrossRefGoogle Scholar
  19. 19.
    Travis W et al (2011) International association for the study of lung cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6(2):244–285PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Travis WD et al (eds) (2004) Pathology and genetics of tumours of the lung, pleura, thymus and heart, World Health Organization classification of tumours. IARC Press, LyonGoogle Scholar
  21. 21.
    de Klerk N et al (1996) Exposure to crocidolite and the incidence of different histological types of lung cancer. Occup Environ Med 53:157–159PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Johansson L et al (1992) Histological type of lung carcinoma in asbestos cement workers and matched controls. Br J Ind Med 49:626–630PubMedPubMedCentralGoogle Scholar
  23. 23.
    McCormack V et al (2012) Estimating the asbestos-related lung cancer burden from mesothelioma mortality. Br J Cancer 106(3):575–584Google Scholar
  24. 24.
    DeMay R (1996) The art and science of cytopathology. ASCP Press, Chicago, pp 207–256Google Scholar
  25. 25.
    Bocking A, Biesterfeld S, Chatelain R (1992) Diagnosis of bronchial carcinoma on sections of paraffin-embedded sputum: sensitivity and specificity of an alternative to routine cytology. Acta Cytol 36:37–42PubMedGoogle Scholar
  26. 26.
    Edell E, Krier-Morrow D (2010) Navigational bronchoscopy: overview of technology and practical considerations – new current procedural terminology codes effective 2010. Chest 137(2):450–454PubMedCrossRefGoogle Scholar
  27. 27.
    Nakajima J, Manabe T, Yagi S (1999) Appearance of mesothelioma cells in sputum: a case report. Acta Cytol 36:731–736Google Scholar
  28. 28.
    Neel H, Woolner L, Sanderson D (1978) Sputum cytologic diagnosis of upper respiratory tract cancer. Ann Otol Rhinol Laryngol 87(4 Pt 1):468–473PubMedCrossRefGoogle Scholar
  29. 29.
    Kettunen E et al (2006) Copy number gains on 5p15, 6p11-q11, 7p12, and 8q24 are rare in sputum cells of individuals at high risk of lung cancer. Lung Cancer 54(2):169–176PubMedCrossRefGoogle Scholar
  30. 30.
    Husgafvel-Pursiainen K et al (1993) K-ras mutations in human adenocarcinoma of the lung: association with smoking and occupational exposure to asbestos. Int J Cancer 53(2):250–256PubMedCrossRefGoogle Scholar
  31. 31.
    Naryshkin S, Young N (1983) Respiratory cytology: a review of non-neoplastic mimics of malignancy. Diagn Cytopathol 9:89–97CrossRefGoogle Scholar
  32. 32.
    Colby T, Koss M, Travis W (1995) Tumors of the lower respiratory tract. In: AFIP (ed) Atlas of tumor pathology. Armed Forces Institute of Pathology, Washington, DC, pp 259–278Google Scholar
  33. 33.
    DeMay R (1996) Respiratory cytology. In: DeMay R (ed) The art and science of cytopathology. ASCP Press, Chicago, pp 207–256Google Scholar
  34. 34.
    Sahn S (1988) Malignant pleural effusion. In: Fishman A (ed) Pulmonary disease and order. McGraw-Hill, New York, pp 2159–2169Google Scholar
  35. 35.
    Epler G, McLoud T, Gaensler E (1982) Prevalence and incidence of benign asbestos pleural effusion in a working population. JAMA 247:617–622PubMedCrossRefGoogle Scholar
  36. 36.
    Light R (2000) Clinical diagnosis of pleural disease. In: Cagle P (ed) Diagnostic pulmonary pathology. Marcel Dekker, New York, pp 571–581Google Scholar
  37. 37.
    Chahinian A, Pajak T, Holand J (1982) Diffuse malignant mesothelioma. Prospective evaluation of 69 patients. Ann Intern Med 96:746–775PubMedCrossRefGoogle Scholar
  38. 38.
    Stevens M (1992) Cytopathology of malignant mesothelioma: a stepwise logistic regression analysis. Diagn Cytopathol 8:333–344PubMedCrossRefGoogle Scholar
  39. 39.
    Pereira TC et al (2006) The diagnosis of malignancy in effusion cytology: a pattern recognition approach. Adv Anat Pathol 13(4):174–184PubMedCrossRefGoogle Scholar
  40. 40.
    Leong A, Stevens M, Mukherjee T (1992) Malignant mesothelioma: cytologic diagnosis with histologic, immunohistochemical and ultrastructural correlation. Semin Diagn Pathol 9:141–150PubMedGoogle Scholar
  41. 41.
    Whitaker D, Shilkin K, Sterrett G (1991) Cytologic appearance of malignant mesothelioma. In: Henderson D, Shilkin K (eds) Malignant mesothelioma. Hemisphere, New York, pp 167–182Google Scholar
  42. 42.
    Churg A, Cagle P, Roggli V (2006) Cytology of the serosal surfaces. In: Tumors of the serosal membranes. ARP Press, Washington, DCGoogle Scholar
  43. 43.
    Zakowski M, Ianuale-Sherman A (1993) Cytology of pericardial effusions in AIDS patients. Diagn Cytopathol 9:266–269PubMedCrossRefGoogle Scholar
  44. 44.
    McCaughey W, Kannerstein M, Churg J (1985) Tumors and pseudotumors of the serous membranes. In: AFIP (ed) Atlas of tumor pathology. Armed Forces Institute of Pathology, Washington, D.C, pp 60–61Google Scholar
  45. 45.
    Husain AN et al (2009) Guidelines for pathologic diagnosis of malignant mesothelioma: a consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 133(8):1317–1331PubMedGoogle Scholar
  46. 46.
    Lozano M et al (2001) Immunocytochemistry in the differential diagnosis of serous effusions: a comparative evaluation of eight monoclonal antibodies in Papanicolaou stained smears. Cancer 93:68–72PubMedCrossRefGoogle Scholar
  47. 47.
    Ordóñez N (2006) The diagnostic utility of immunohistochemistry and electron microscopy in distinguishing between peritoneal mesotheliomas and serous carcinomas: a comparative study. Mod Pathol 19(1):34–48PubMedCrossRefGoogle Scholar
  48. 48.
    Ordóñez N (2007) What are the current best immunohistochemical markers for the diagnosis of epithelioid mesothelioma? A review and update. Hum Pathol 38(1):1–16PubMedCrossRefGoogle Scholar
  49. 49.
    Husain AN et al (2013) Guidelines for pathologic diagnosis of malignant mesothelioma: 2012 update of the consensus statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med 137(5):647–667Google Scholar
  50. 50.
    Wieczorek T, Krane J (2000) Diagnostic utility of calretinin immunohistochemistry in cytologic cell block preparations. Cancer 90:312–319PubMedCrossRefGoogle Scholar
  51. 51.
    Politi E et al (2005) Immunocytochemical panel for distinguishing between carcinoma and reactive mesothelial cells in body cavity fluids. Diagn Cytopathol 32(3):151–155PubMedCrossRefGoogle Scholar
  52. 52.
    Davidson B et al (2007) Flow cytometric immunophenotyping of cancer cells in effusion specimens: diagnostic and research applications. Diagn Cytopathol 35(9):568–578PubMedCrossRefGoogle Scholar
  53. 53.
    Fetsch P, Simsir A, Abati A (2001) Comparison of antibodies to HBME-1 and calretinin for the detection of mesothelial cells in effusion cytology. Diagn Cytopathol 25:158–161PubMedCrossRefGoogle Scholar
  54. 54.
    Motherby H et al (1999) Immunocytochemistry and DNA-image cytometry in diagnostic effusion cytology. Part 1. Anal Cell Pathol 19:7–20PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kim JH et al (2009) Immunocytochemical panel for distinguishing between adenocarcinomas and reactive mesothelial cells in effusion cell blocks. Diagn Cytopathol 37(4):258–261PubMedCrossRefGoogle Scholar
  56. 56.
    Kundu U, Krishnamurthy S (2011) Use of the monoclonal antibody MOC-31 as an immunomarker for detecting metastatic adenocarcinoma in effusion cytology. Cancer Cytopathol 119(4):272–278PubMedCrossRefGoogle Scholar
  57. 57.
    Ikeda K et al (2011) Diagnostic usefulness of EMA, IMP3, and GLUT-1 for the immunocytochemical distinction of malignant cells from reactive mesothelial cells in effusion cytology using cytospin preparations. Diagn Cytopathol 39(6):395–401PubMedCrossRefGoogle Scholar
  58. 58.
    Kato Y et al (2007) Immunohistochemical detection of GLUT-1 can discriminate between reactive mesothelium and malignant mesothelioma. Mod Pathol 20(2):215–220PubMedCrossRefGoogle Scholar
  59. 59.
    Shi M et al (2011) Oncofetal protein IMP3, a new diagnostic biomarker to distinguish malignant mesothelioma from reactive mesothelial proliferation. Am J Surg Pathol 35(6):878–882PubMedCrossRefGoogle Scholar
  60. 60.
    Simsir A et al (1999) E-cadherin, N-cadherin and calretinin in pleural effusions: the good, the bad, the worthless. Diagn Cytopathol 20:125–130PubMedCrossRefGoogle Scholar
  61. 61.
    Kitazume H et al (2000) Cytologic differential diagnosis among reactive mesothelial cells, malignant mesothelioma and adenocarcinoma: utility of combined E-cadherin and calretinin immunostaining. Cancer 90:55–60PubMedCrossRefGoogle Scholar
  62. 62.
    Chiosea S et al (2008) Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Mod Pathol 21(6):742–747PubMedCrossRefGoogle Scholar
  63. 63.
    Borczuk A et al (2005) P16 loss and mitotic activity predict poor survival in patients with peritoneal malignant mesothelioma. Clin Cancer Res 11:3303–3308PubMedCrossRefGoogle Scholar
  64. 64.
    Illei P et al (2003) The Use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer Cytopathol 99:51–56CrossRefGoogle Scholar
  65. 65.
    Bott M et al (2011) The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma. Nat Genet 43(7):668–672PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Shin HJ et al (2003) Detection of numerical aberrations of chromosomes 7 and 9 in cytologic specimens of pleural malignant mesothelioma. Cancer 99(4):233–239PubMedCrossRefGoogle Scholar
  67. 67.
    Friedman MT et al (1996) Malignant mesothelioma: immunohistochemistry and DNA ploidy analysis as methods to differentiate mesothelioma from benign reactive mesothelial cell proliferation and adenocarcinoma in pleural and peritoneal effusions. Arch Pathol Lab Med 120(10):959–966PubMedGoogle Scholar
  68. 68.
    Granados R, Cibas ES, Fletcher JA (1994) Cytogenetic analysis of effusions from malignant mesothelioma. A diagnostic adjunct to cytology. Acta Cytol 38(5):711–717PubMedGoogle Scholar
  69. 69.
    Sakuma N, Kamei T, Ishihara T (1999) Ultrastructure of pleural mesothelioma and pulmonary adenocarcinoma in malignant effusions as compared with reactive mesothelial cells. Acta Cytol 43(5):777–785PubMedCrossRefGoogle Scholar
  70. 70.
    Attanoos RL, Gibbs AR (1997) Pathology of malignant mesothelioma. Histopathology 30(5):403–418PubMedCrossRefGoogle Scholar
  71. 71.
    Tickman RJ et al (1990) Distinction between carcinoma cells and mesothelial cells in serous effusions. Usefulness of immunohistochemistry. Acta Cytol 34(4):491–496PubMedGoogle Scholar
  72. 72.
    Barberis MC et al (1997) Calretinin. A selective marker of normal and neoplastic mesothelial cells in serous effusions. Acta Cytol 41(6):1757–1761PubMedCrossRefGoogle Scholar
  73. 73.
    Hecht JL et al (2001) The value of thyroid transcription factor-1 in cytologic preparations as a marker for metastatic adenocarcinoma of lung origin. Am J Clin Pathol 116(4):483–488PubMedCrossRefGoogle Scholar
  74. 74.
    DiBonito L et al (1993) Cytopathology of malignant mesothelioma: a study of its patterns and histological bases. Diagn Cytopathol 9(1):25–31PubMedCrossRefGoogle Scholar
  75. 75.
    Sherman ME, Mark EJ (1990) Effusion cytology in the diagnosis of malignant epithelioid and biphasic pleural mesothelioma. Arch Pathol Lab Med 114(8):845–851PubMedGoogle Scholar
  76. 76.
    Hammar S et al (2008) Neoplasms of the pleura. In: Tomashefski J Jr (ed) Dail and Hammar’s pulmonary pathology. Springer, New York, pp 661–668Google Scholar
  77. 77.
    Yu GH, Baloch ZW, Gupta PK (1999) Cytomorphology of metastatic mesothelioma in fine-needle aspiration specimens. Diagn Cytopathol 20(6):328–332PubMedCrossRefGoogle Scholar
  78. 78.
    Nguyen GK et al (1999) Cytopathology of malignant mesothelioma of the pleura in fine-needle aspiration biopsy. Diagn Cytopathol 21(4):253–259PubMedCrossRefGoogle Scholar
  79. 79.
    Yu GH et al (2001) Changing clinical course of patients with malignant mesothelioma: implications for FNA cytology and utility of immunocytochemical staining. Diagn Cytopathol 24(5):322–327PubMedCrossRefGoogle Scholar
  80. 80.
    Obers VJ et al (1988) Primary malignant pleural tumors (mesotheliomas) presenting as localized masses. Fine needle aspiration cytologic findings, clinical and radiologic features and review of the literature. Acta Cytol 32(4):567–575PubMedGoogle Scholar
  81. 81.
    Sterrett GF et al (1987) Fine needle aspiration cytology of malignant mesothelioma. Acta Cytol 31(2):185–193PubMedGoogle Scholar
  82. 82.
    Renshaw AA et al (1997) The role of cytologic evaluation of pleural fluid in the diagnosis of malignant mesothelioma. Chest 111(1):106–109PubMedCrossRefGoogle Scholar
  83. 83.
    Walters J, Maskell NA (2011) Biopsy techniques for the diagnosis of mesothelioma. Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer 189:45–55Google Scholar
  84. 84.
    Agarwal PP et al (2006) Pleural mesothelioma: sensitivity and incidence of needle track seeding after image-guided biopsy versus surgical biopsy. Radiology 241(2):589–594PubMedCrossRefGoogle Scholar
  85. 85.
    Greenberg S (1982) Asbestos lung disease. Semin Respir Med 4:130–136CrossRefGoogle Scholar
  86. 86.
    Mace ML Jr et al (1980) Scanning electron microscopic examination of human asbestos bodies. Cancer Lett 9(2):95–104PubMedCrossRefGoogle Scholar
  87. 87.
    McLemore TL et al (1980) Asbestos body phagocytosis by human free alveolar macrophages. Cancer Lett 9(2):85–93PubMedCrossRefGoogle Scholar
  88. 88.
    Dumortier P, Broucke I, De Vuyst P (2001) Pseudoasbestos bodies and fibers in bronchoalveolar lavage of refractory ceramic fiber users. Am J Respir Crit Care Med 164(3):499–503PubMedCrossRefGoogle Scholar
  89. 89.
    Alexopoulos EC et al (2011) Comparative analysis of induced sputum and bronchoalveolar lavage fluid (BALF) profile in asbestos exposed workers. J Occup Med Toxicol 6:23PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Putzu MG et al (2006) Fluoro-edenitic fibres in the sputum of subjects from Biancavilla (Sicily): a pilot study. Environ Health 5:20PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Alderisio M et al (2006) Cytological value of sputum in workers daily exposed to air pollution. Anticancer Res 26(1A):395–403PubMedGoogle Scholar
  92. 92.
    McLarty JW et al (1980) The clinical significance of ferruginous bodies in sputa. J Occup Med 22(2):92–96PubMedCrossRefGoogle Scholar
  93. 93.
    Bignon J et al (1974) Microfiltration method for quantitative study of fibrous particles in biological specimens. Environ Health Perspect 9:155–160PubMedPubMedCentralGoogle Scholar
  94. 94.
    Modin BE et al (1982) Asbestos bodies in a general hospital/clinic population. Acta Cytol 26(5):667–677PubMedGoogle Scholar
  95. 95.
    Farley ML et al (1977) Ferruginous bodies in sputa of former asbestos workers. Acta Cytol 21(5):693–700PubMedGoogle Scholar
  96. 96.
    De Vuyst P et al (1988) Asbestos bodies in bronchoalveolar lavage reflect lung asbestos body concentration. Eur Respir J 1(4):362–367PubMedGoogle Scholar
  97. 97.
    Sebastien P et al (1988) Asbestos bodies in bronchoalveolar lavage fluid and in lung parenchyma. Am Rev Respir Dis 137(1):75–78PubMedCrossRefGoogle Scholar
  98. 98.
    Karjalainen A et al (1996) Asbestos bodies in bronchoalveolar lavage in relation to asbestos bodies and asbestos fibres in lung parenchyma. Eur Respir J 9(5):1000–1005PubMedCrossRefGoogle Scholar
  99. 99.
    Teschler H et al (1993) [The content of asbestos bodies in the bronchoalveolar fluid as a parameter of an increased pulmonary asbestos load]. Dtsch Med Wochenschr 118(48):1749–1754PubMedCrossRefGoogle Scholar
  100. 100.
    Teschler H et al (1993) Distribution of asbestos bodies in the human lung as determined by bronchoalveolar lavage. Am Rev Respir Dis 147(5):1211–1215PubMedCrossRefGoogle Scholar
  101. 101.
    De Vuyst P et al (1987) Diagnostic value of asbestos bodies in bronchoalveolar lavage fluid. Am Rev Respir Dis 136(5):1219–1224PubMedCrossRefGoogle Scholar
  102. 102.
    Roggli VL, Piantadosi CA, Bell DY (1986) Asbestos bodies in bronchoalveolar lavage fluid. A study of 20 asbestos-exposed individuals and comparison to patients with other chronic interstitial lung diseases. Acta Cytol 30(5):470–476PubMedGoogle Scholar
  103. 103.
    Musti M et al (2006) [Consensus Conference “Health surveillance of resident population exposed to tremolite in Local Health Unit 3 territory Lagonegro, PZ”. Rome 22–23 February 2005]. Ann Ist Super Sanita 42(4):469–476PubMedGoogle Scholar
  104. 104.
    Vathesatogkit P et al (2004) Clinical correlation of asbestos bodies in BAL fluid. Chest 126(3):966–971PubMedCrossRefGoogle Scholar
  105. 105.
    Roggli VL et al (1994) Asbestos content of bronchoalveolar lavage fluid. A comparison of light and scanning electron microscopic analysis. Acta Cytol 38(4):502–510PubMedGoogle Scholar
  106. 106.
    Karjalainen A et al (1994) Asbestos bodies in bronchoalveolar lavage fluid in relation to occupational history. Am J Ind Med 26(5):645–654PubMedCrossRefGoogle Scholar
  107. 107.
    Schwartz DA et al (1991) The clinical utility and reliability of asbestos bodies in bronchoalveolar fluid. Am Rev Respir Dis 144(3 Pt 1):684–688PubMedCrossRefGoogle Scholar
  108. 108.
    Albin M et al (1990) Mineral fibres, fibrosis, and asbestos bodies in lung tissue from deceased asbestos cement workers. Br J Ind Med 47(11):767–774PubMedPubMedCentralGoogle Scholar
  109. 109.
    Teschler H et al (1994) Asbestos fibers in bronchoalveolar lavage and lung tissue of former asbestos workers. Am J Respir Crit Care Med 149(3 Pt 1):641–645PubMedCrossRefGoogle Scholar
  110. 110.
    Dumortier P et al (1998) Assessment of environmental asbestos exposure in Turkey by bronchoalveolar lavage. Am J Respir Crit Care Med 158(6):1815–1824PubMedCrossRefGoogle Scholar
  111. 111.
    De Vuyst P, Dumortier P, Gevenois PA (1997) Analysis of asbestos bodies in BAL from subjects with particular exposures. Am J Ind Med 31(6):699–704PubMedCrossRefGoogle Scholar
  112. 112.
    Roggli VL, Johnston WW, Kaminsky DB (1984) Asbestos bodies in fine needle aspirates of the lung. Acta Cytol 28(4):493–498PubMedGoogle Scholar
  113. 113.
    Leiman G (1991) Asbestos bodies in fine needle aspirates of lung masses. Markers of underlying pathology. Acta Cytol 35(2):171–174PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PathologyUniversity of Pittsburgh, Presbyterian University HospitalPittsburghUSA
  2. 2.Department of PathologyDuke Clinics-Duke University Medical CenterDurhamUSA

Personalised recommendations