Asbestos Bodies and Non-asbestos Ferruginous Bodies

  • Victor L. RoggliEmail author


Asbestos bodies are the histologic hallmark of exposure to asbestos [1–4]. These structures are golden brown, beaded or segmented, dumbbell-shaped objects that have a characteristic microscopic appearance that is readily recognized by the pathologist. Their identification in histologic sections is an important component of the pathologic diagnosis of asbestosis (see  Chap. 4), and their presence serves to alert the pathologist that the patient has been exposed to airborne asbestos fibers. It is the purpose of this chapter to discuss the structure and development of asbestos bodies as well as their occurrence and distribution within human tissues. In addition, techniques for the quantification of asbestos bodies are reviewed, along with the relationship of asbestos body formation to the various types of asbestos fibers. Finally, the distinction of asbestos bodies from other ferruginous bodies based on light microscopic and analytical electron microscopic observations is emphasized. The identification and significance of asbestos bodies in cytologic specimens is discussed in  Chap. 9, and the relationship between asbestos body concentrations in pulmonary tissues and the various asbestos-associated diseases is reviewed in  Chap. 11.


Lung Tissue Energy Dispersive Spectrometry Malignant Pleural Mesothelioma Asbestos Fiber Chrysotile Asbestos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Roggli VL, Greenberg SD, Seitzman LH, McGavran MH, Hurst GA, Spivey CG, Nelson KG, Hieger LR (1980) Pulmonary fibrosis, carcinoma, and ferruginous body counts in amosite asbestos workers: a study of six cases. Am J Clin Pathol 73:496–503PubMedCrossRefGoogle Scholar
  2. 2.
    Greenberg SD (1982) Asbestos lung disease. Semin Respir Med 4:130–136CrossRefGoogle Scholar
  3. 3.
    Greenberg SD (1988) Asbestos, Ch 22. In: Dail DH, Hammar SP (eds) Pulmonary pathology. Springer, New York, pp 619–635CrossRefGoogle Scholar
  4. 4.
    Craighead JE, Abraham JL, Churg A et al (1982) The pathology of asbestos- associated diseases of the lungs and pleural cavities: diagnostic criteria and proposed grading schema (Report of the Pneumoconiosis Committee of the College of American Pathologists and the National Institute for Occupational Safety and Health). Arch Pathol Lab Med 106:544–596PubMedGoogle Scholar
  5. 5.
    Marchand F (1906) Ueber eigenttimliche Pigmentkristalle in den Lungen. Verhandl d Deutsch path Gesellsch 10:223–228Google Scholar
  6. 6.
    Fahr T (1914) Demonstrationen: Praparate and Microphotogrammes von einen Falle von Pneumokoniose. Muench Med Woch 11:625Google Scholar
  7. 7.
    Cooke WE (1927) Pulmonary asbestosis. Br Med J 2:1024–1025PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Stewart MJ, Haddow AC (1929) Demonstration of the peculiar bodies of pulmonary asbestosis (“asbestosis bodies”) in material obtained by lung puncture and in the sputum. J Pathol Bacteriol 32:172CrossRefGoogle Scholar
  9. 9.
    Cooke WE (1929) Asbestos dust and the curious bodies found in pulmonary asbestosis. Br Med J 2:578–580PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Gloyne SR (1929) The presence of the asbestos fibre in the lesions of asbestos workers. Tubercle 10:404–407CrossRefGoogle Scholar
  11. 11.
    Craighead JE (1988) Eyes for the epidemiologist: the pathologist’s role in shaping our understanding of the asbestos-associated diseases. Am J Clin Pathol 89:281–287PubMedCrossRefGoogle Scholar
  12. 12.
    Castleman BI (1984) Asbestos: medical and legal aspects. Harcourt, Brace, and Jovanovich, New YorkGoogle Scholar
  13. 13.
    Roggli VL (1989) Pathology of human asbestosis: a critical review. In: Fenoglio-Preiser CM (ed) Advances in pathology, vol 2. Yearbook Pub., Inc, Chicago, pp 31–60Google Scholar
  14. 14.
    Gross P, de Treville RTP, Cralley LJ, Davis JMG (1968) Pulmonary ferruginous bodies: development in response to filamentous dusts and a method of isolation and concentration. Arch Pathol 85:539–546PubMedGoogle Scholar
  15. 15.
    Gaensler EA, Addington WW (1969) Asbestos or ferruginous bodies. N Engl J Med 280:488–492PubMedCrossRefGoogle Scholar
  16. 16.
    Churg A, Warnock ML (1977) Analysis of the cores of ferruginous (asbestos) bodies from the general population. I: Patients with and without lung cancer. Lab Invest 37:280–286PubMedGoogle Scholar
  17. 17.
    Churg A, Warnock ML, Green N (1979) Analysis of the cores of ferruginous (asbestos) bodies from the general population. II. True asbestos bodies and pseudoasbestos bodies. Lab Invest 40:31–38PubMedGoogle Scholar
  18. 18.
    Greenberg SD (1981) Asbestos-associated pulmonary diseases. Cypress, CAGoogle Scholar
  19. 19.
    Davis JMG (1970) Further observations on the ultrastructure and chemistry of the formation of asbestos bodies. Exp Mol Pathol 13:346–358PubMedCrossRefGoogle Scholar
  20. 20.
    Governa M, Rosanda C (1972) A histochemical study of the asbestos body coating. Br J Ind Med 29:154–159PubMedPubMedCentralGoogle Scholar
  21. 21.
    Churg AM, Warnock ML (1981) Asbestos and other ferruginous bodies: their formation and clinical significance. Am J Pathol 102:447–456PubMedPubMedCentralGoogle Scholar
  22. 22.
    Vorwald AJ, Durkan TM, Pratt PC (1951) Experimental studies of asbestosis. Arch Ind Hyg Occup Med 3:1–43Google Scholar
  23. 23.
    McLemore TL, Mace ML, Roggli V, Marshall MV, Lawrence EC, Wilson RK, Martin RR, Brinkley BR, Greenberg SD (1980) Asbestos body phagocytosis by human free alveolar macrophages. Cancer Lett 9:85–93PubMedCrossRefGoogle Scholar
  24. 24.
    Ghio AJ, LeFurgey A, Roggli VL (1997) In vivo accumulation of iron on crocidolite is associated with decrements in oxidant generation by the fiber. J Toxicol Environ Health 50:125–142PubMedCrossRefGoogle Scholar
  25. 25.
    Governa MM, Amati M (1999) Role of iron in asbestos-body-induced oxidant radical generation. J Toxicol Environ Health 58:279–287CrossRefGoogle Scholar
  26. 26.
    Ghio AJ, Churg A, Roggli VL (2004) Ferruginous bodies: implications in the mechanism of fiber and particle toxicity. Toxicol Pathol 32:643–649PubMedCrossRefGoogle Scholar
  27. 27.
    Roggli VL, Pratt PC (1983) Numbers of asbestos bodies on iron-stained tissue sections in relation to asbestos body counts in lung tissue digests. Hum Pathol 14:355–361PubMedCrossRefGoogle Scholar
  28. 28.
    Farley ML, Greenberg SD, Shuford EH Jr, Hurst GA, Spivey CG, Christianson CS (1977) Ferruginous bodies in sputa of former asbestos workers. Acta Cytol 27:693–700Google Scholar
  29. 29.
    Morgan A, Holmes A (1980) Concentrations and dimensions of coated and uncoated asbestos fibres in the human lung. Br J Ind Med 37:25–32PubMedPubMedCentralGoogle Scholar
  30. 30.
    Morgan A, Holmes A (1985) The enigmatic asbestos body: its formation and significance in asbestos-related disease. Environ Res 38:283–292PubMedCrossRefGoogle Scholar
  31. 31.
    Dodson RF, O’Sullivan MF, Williams MG Jr, Hurst GA (1982) Analysis of cores of ferruginous bodies from former asbestos workers. Environ Res 28:171–178PubMedCrossRefGoogle Scholar
  32. 32.
    Dodson RF, Williams MG, O’Sullivan MF, Corn CJ, Greenberg SD, Hurst GA (1985) A comparison of the ferruginous body and uncoated fiber content in the lungs of former asbestos workers. Am Rev Respir Dis 132:143–147PubMedGoogle Scholar
  33. 33.
    Warnock ML, Wolery G (1987) Asbestos bodies or fibers and the diagnosis of asbestosis. Environ Res 44:29–44PubMedCrossRefGoogle Scholar
  34. 34.
    Suzuki Y, Churg J (1969) Structure and development of the asbestos body. Am J Pathol 55:79–107PubMedPubMedCentralGoogle Scholar
  35. 35.
    Koerten HK, Hazekamp J, Kroon M, Daems WT (1990) Asbestos body formation and iron accumulation in mouse peritoneal granulomas after the introduction of crocidolite asbestos fibers. Am J Pathol 136:141–157PubMedPubMedCentralGoogle Scholar
  36. 36.
    Pascolo L, Gianocelli A, Kaulich B, Rizzardi C, Schneider M, Bottin C, Polentarutti M, Kishinova M, Longoni A, Melato M (2011) Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues. Part Fibre Toxicol 8:7–17PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Borelli V, Brochetta C, Melato M, Rizzardi C, Polentarutti M, Busatto C, Vita F, Abbate R, Gotter R, Zabucchi G (2007) A procedure for the isolation of asbestos bodies from lung tissue by exploiting their magnetic properties: a new approach to asbestos body study. J Toxicol Environ Health A 70:1232–1240PubMedCrossRefGoogle Scholar
  38. 38.
    Haque AK, Kanz MF (1988) Asbestos bodies in children’s lungs: an association with sudden infant death syndrome and bronchopulmonary dysplasia. Arch Pathol Lab Med 112:514–518PubMedGoogle Scholar
  39. 39.
    Gloyne SR (1931) The formation of the asbestosis body in the lung. Tubercle 12:399–401CrossRefGoogle Scholar
  40. 40.
    Botham SK, Holt PF (1971) Development of asbestos bodies on amosite, chrysotile, and crocidolite fibres in guinea-pig lungs. J Pathol 105:159–167PubMedCrossRefGoogle Scholar
  41. 41.
    Mace ML, McLemore TL, Roggli V, Brinkley BR, Greenberg SD (1980) Scanning electron microscopic examination of human asbestos bodies. Cancer Lett 9:95–104PubMedCrossRefGoogle Scholar
  42. 42.
    Koerten HK, de Bruijn JD, Daems WT (1990) The formation of asbestos bodies by mouse peritoneal macrophages: an in vitro study. Am J Pathol 137:121–134PubMedPubMedCentralGoogle Scholar
  43. 43.
    DeVuyst P, Jedwab J, Robience Y, Yernault J-C (1982) “Oxalate bodies”, another reaction of the human lung to asbestos inhalation? Eur J Respir Dis 63:543–549Google Scholar
  44. 44.
    Le Bouffant L, Bruyere S, Martin JC, Tichoux G, Normand C (1976) Quelques observations sur les fibres d’amiante et les formations minerales diverses rencontrees dans les poumons asbestosiques. Rev Fr Mal Respir 4:121–140Google Scholar
  45. 45.
    Ghio AJ, Roggli VL, Richards JH, Crissman KM, Stonehuerner JD, Piantadosi CA (2003) Oxalate deposition on asbestos bodies. Hum Pathol 34:737–742PubMedCrossRefGoogle Scholar
  46. 46.
    Roggli VL (1989) Scanning electron microscopic analysis of mineral fibers in human lungs, Ch 5. In: Ingram P, Shelburne JD, Roggli VL (eds) Microprobe analysis in medicine. Hemisphere Pub. Corp, Washington, DC, p 97–110Google Scholar
  47. 47.
    Brody AR, Hill LH (1982) Interstitial accumulation of inhaled chrysotile asbestos fibers and consequent formation of microcalcifications. Am J Pathol 109:107–114PubMedPubMedCentralGoogle Scholar
  48. 48.
    Koss MN, Johnson FB, Hochholzer L (1981) Pulmonary blue bodies. Hum Pathol 12:258–266PubMedCrossRefGoogle Scholar
  49. 49.
    Thomson JG, Kaschula ROC, MacDonald RR (1963) Asbestos as a modern urban hazard. S Afr Med J 37:77–81PubMedGoogle Scholar
  50. 50.
    Bignon J, Goni J, Bonnaud G, Jaurand MC, Dufour G, Pinchon MC (1970) Incidence of pulmonary ferruginous bodies in France. Environ Res 3:430–442CrossRefGoogle Scholar
  51. 51.
    Smith MJ, Naylor B (1972) A method of extracting ferruginous bodies from sputum and pulmonary tissues. Am J Clin Pathol 58:250–254PubMedCrossRefGoogle Scholar
  52. 52.
    Rosen P, Melamed M, Savino A (1972) The “ferruginous body” content of lung tissue: a quantitative study of eighty-six patients. Acta Cytol 16:207–211PubMedGoogle Scholar
  53. 53.
    Breedin PH, Buss DH (1976) Ferruginous (asbestos) bodies in the lungs of rural dwellers, urban dwellers and patients with pulmonary neoplasms. South Med J 69:401–404PubMedCrossRefGoogle Scholar
  54. 54.
    Bhagavan BS, Koss LG (1976) Secular trends in presence and concentration of pulmonary asbestos bodies – 1940 to 1972. Arch Pathol 100:539–541Google Scholar
  55. 55.
    Churg A, Warnock ML (1977) Correlation of quantitative asbestos body counts and occupation in urban patients. Arch Pathol Lab Med 101:629–634PubMedGoogle Scholar
  56. 56.
    Steele RH, Thomson KJ (1982) Asbestos bodies in the lung: Southampton (UK) and Wellington (New Zealand). Br J Ind Med 39:349–354PubMedPubMedCentralGoogle Scholar
  57. 57.
    Rogers AJ (1984) Determination of mineral fibre in human lung tissue by light microscopy and transmission electron microscopy. Ann Occup Hyg 28:1–12PubMedGoogle Scholar
  58. 58.
    Kobayashi H, Watanabe H, Zhang WM, Ohnishi Y (1986) A quantitative and histological study on pulmonary effects of asbestos exposure in general autopsied lungs. Acta Pathol Jpn 36:1781–1791PubMedGoogle Scholar
  59. 59.
    Dodson RF, Williams MG, Huang J, Bruce JR (1999) Tissue burden of asbestos in nonoccupationally exposed individuals from east Texas. Am J Ind Med 35:281–286PubMedCrossRefGoogle Scholar
  60. 60.
    King JA, Wong SW (1996) Autopsy evaluation of asbestos exposure: retrospective study of 135 cases with quantitation of ferruginous bodies in digested lung tissue. South Med J 89:380–385PubMedCrossRefGoogle Scholar
  61. 61.
    Kishimoto T (1992) Intensity of exposure to asbestos in metropolitan Kure City as estimated by autopsied cases. Cancer 69:2598–2602PubMedCrossRefGoogle Scholar
  62. 62.
    Arenas-Huertero FJ, Salazar-Flores M, Osornio-Vargas AR (1994) Ferruginous bodies as markers of environmental exposure to inorganic particles: experience with 270 autopsy cases in Mexico. Environ Res 64:10–17PubMedCrossRefGoogle Scholar
  63. 63.
    Monso EA, Texido A, Lopez D, Aguilar X, Fiz J, Ruiz J, Rosell A, Vaquero M, Morera J (1995) Asbestos bodies in normal lung of western Mediterranean population with no occupational exposure to inorganic dust. Arch Environ Health 50:305–311PubMedCrossRefGoogle Scholar
  64. 64.
    Sebastien P, Fondimare A, Bignon J, Monchaux G, Desbordes J, Bonnaud G (1977) Topographic distribution of asbestos fibres in human lung in relation to occupational and non-occupational exposure. In: Walton WH (ed) Inhaled particles, vol IV. Pergamon Press, Oxford, pp 435–446Google Scholar
  65. 65.
    Gylseth B, Baunan R (1981) Topographic and size distribution of asbestos bodies in exposed human lungs. Scand J Work Environ Health 7:190–195PubMedCrossRefGoogle Scholar
  66. 66.
    Morgan A, Holmes A (1983) Distribution and characteristics of amphibole asbestos fibres, measured with the light microscope, in the left lung of an insulation worker. Br J Ind Med 40:45–50PubMedPubMedCentralGoogle Scholar
  67. 67.
    Morgan A, Holmes A (1984) The distribution and characteristics of asbestos fibers in the lungs of Finnish anthophyllite mine-workers. Environ Res 33:62–75PubMedCrossRefGoogle Scholar
  68. 68.
    Pinkerton KE, Plopper CG, Mercer RR, Roggli VL, Patra AL, Brody AR, Crapo JD (1986) Airway branching patterns influence asbestos fiber location and the extent of tissue injury in the pulmonary parenchyma. Lab Invest 55:688–695PubMedGoogle Scholar
  69. 69.
    Um CH (1971) Study of the secular trend in asbestos bodies in lungs in London, 1936-1966. Br Med J 2:248–252PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Selikoff IJ, Hammond EC (1970) Asbestos bodies in the New York City population in two periods of time. In: Shapiro HA (ed) Pneumoconiosis: proceedings of the international conference, Johannesburg, 1969. Oxford University Press, Capetown, pp 99–105Google Scholar
  71. 71.
    Churg A (1982) Fiber counting and analysis in the diagnosis of asbestos-related disease. Hum Pathol 13:381–392PubMedCrossRefGoogle Scholar
  72. 72.
    Vollmer RT, Roggli VL (1985) Asbestos body concentrations in human lung: predictions from asbestos body counts in tissue sections with a mathematical model. Hum Pathol 16:713–718PubMedCrossRefGoogle Scholar
  73. 73.
    Williams MG Jr, Dodson RF, Corn C, Hurst GA (1982) A procedure for the isolation of amosite asbestos and ferruginous bodies from lung tissue and sputum. J Toxicol Environ Health 10:627–638PubMedCrossRefGoogle Scholar
  74. 74.
    Warnock ML, Prescott BT, Kuwahara TJ (1982) Correlation of asbestos bodies and fibers in lungs of subjects with and without asbestosis. Scan Electron Microsc 11:845–857Google Scholar
  75. 75.
    Warnock ML, Kuwahara TJ, Wolery G (1983) The relation of asbestos burden to asbestosis and lung cancer. Pathol Annu 18(2):109–145PubMedGoogle Scholar
  76. 76.
    Roggli VL, Pratt PC, Brody AR (1986) Asbestos content of lung tissue in asbestos associated diseases: a study of 110 cases. Br J Ind Med 43:18–28PubMedPubMedCentralGoogle Scholar
  77. 77.
    Ehrlich A, Suzuki Y (1987) A rapid and simple method of extracting asbestos bodies from lung tissue by cytocentrifugation. Am J Ind Med 11:109–116PubMedCrossRefGoogle Scholar
  78. 78.
    Manke J, Rodelsperger K, Brtickel B, Woitowitz H-J (1987) Evaluation and application of a plasma ashing method for STEM fiber analysis in human lung tissue. Am Ind Hyg Assoc J 48:730–738PubMedCrossRefGoogle Scholar
  79. 79.
    Gylseth B, Baunan RH, Overaae L (1982) Analysis of fibres in human lung tissue. Br J Ind Med 39:191–195PubMedPubMedCentralGoogle Scholar
  80. 80.
    Castro-Cordoba F, Arenas-Huertero F, Salazar-Flores M, Osornio-Vargas A (1993) Modification of the Smith and Naylor technique for the identification of ferruginous bodies. Arch Med Res 24:199–201PubMedGoogle Scholar
  81. 81.
    Corn CJ, Williams MG Jr, Dodson RF (1987) Electron microscopic analysis of residual asbestos remaining in preparative vials following bleach digestion. J Electron Microsc Tech 6:1–6CrossRefGoogle Scholar
  82. 82.
    Gylseth B, Churg A, Davis JMG, Johnson N, Morgan A, Mowe G, Rogers A, Roggli V (1985) Analysis of asbestos fibers and asbestos bodies in tissue samples from human lung: an international interlaboratory trial. Scand J Work Environ Health 11:107–110PubMedCrossRefGoogle Scholar
  83. 83.
    Velasco-Garcia M-I, Cruz M-J, Ruano L, Montero M-A, Freixa A, Ferrer J (2011) Reproducibility of asbestos body counts in digestions of autopsy and surgical lung tissue. Am J Ind Med 54:597–602PubMedCrossRefGoogle Scholar
  84. 84.
    Mollo F, Cravello M, Andreozzi A, Burlo P, Bo P, Attanasio A, De Giuli P (2000) Asbestos body burden in decomposed human lungs. Am J Forensic Med Pathol 21:148–150PubMedCrossRefGoogle Scholar
  85. 85.
    Gloyne SR (1933) The morbid anatomy and histology of asbestosis. Tubercle 14:550–558CrossRefGoogle Scholar
  86. 86.
    Godwin MC, Jagatic J (1970) Asbestos and mesotheliomas. Environ Res 3:391–416CrossRefGoogle Scholar
  87. 87.
    Roggli VL, Benning TL (1990) Asbestos bodies in pulmonary hilar lymph nodes. Mod Pathol 3:513–517PubMedGoogle Scholar
  88. 88.
    Dodson RF, Huang J, Bruce JR (2000) Asbestos content in the lymph nodes of nonoccupationally exposed individuals. Am J Ind Med 37:169–174PubMedCrossRefGoogle Scholar
  89. 89.
    Dodson RF, Shepherd S, Levin J, Hammar SP (2007) Characteristics of asbestos concentration in lung as compared to asbestos concentration in various levels of lymph nodes that collect drainage from the lung. Ultrastruct Pathol 31:95–133PubMedCrossRefGoogle Scholar
  90. 90.
    Roggli VL, Piantadosi CA, Bell DY (1986) Asbestos bodies in bronchoalveolar lavage fluid: a study of 20 asbestos-exposed individuals and comparison to patients with other chronic interstitial lung diseases. Acta Cytol 30:470–476PubMedGoogle Scholar
  91. 91.
    Auerbach O, Conston AS, Garfinkel L, Parks VR, Kaslow HD, Hammond EC (1980) Presence of asbestos bodies in organs other than the lung. Chest 77:133–137PubMedCrossRefGoogle Scholar
  92. 92.
    Kobayashi H, Ming ZW, Watanabe H, Ohnishi Y (1987) A quantitative study on the distribution of asbestos bodies in extrapulmonary organs. Acta Pathol Jpn 37:375–383PubMedGoogle Scholar
  93. 93.
    Dodson RF, O’Sullivan MF, Huang J, Holiday DB, Hammar SP (2000) Asbestos in extrapulmonary sites: omentum and mesentery. Chest 117:486–493PubMedCrossRefGoogle Scholar
  94. 94.
    Roggli VL, Greenberg SD, McLarty JL, Hurst GA, Spivey CG, Hieger LR (1980) Asbestos body content of the larynx in asbestos workers. Arch Otolaryngol 106:553–555CrossRefGoogle Scholar
  95. 95.
    Ehrlich A, Rohl AN, Holstein EC (1985) Asbestos bodies in carcinoma of colon in an insulation worker with asbestosis. JAMA 254:2932–2933PubMedCrossRefGoogle Scholar
  96. 96.
    Rosen P, Savino A, Melamed M (1974) Ferruginous (asbestos) bodies and primary cancer of the colon. Am J Clin Pathol 61:135–138PubMedCrossRefGoogle Scholar
  97. 97.
    Holt PF (1981) Transport of inhaled dust to extrapulmonary sites. J Pathol 133:123–129PubMedCrossRefGoogle Scholar
  98. 98.
    Lee KP, Barras CE, Griffith FD, Waritz RS, Lapin CA (1981) Comparative pulmonary responses to inhaled inorganic fibers with asbestos and fiberglass. Environ Res 24:167–191PubMedCrossRefGoogle Scholar
  99. 99.
    Pooley FD (1972) Asbestos bodies, their formation, composition and character. Environ Res 5:363–379PubMedCrossRefGoogle Scholar
  100. 100.
    Langer AM, Rubin IB, Selikoff IJ (1972) Chemical characterization of asbestos body cores by electron microprobe analysis. J Histochem Cytochem 20:723–734PubMedCrossRefGoogle Scholar
  101. 101.
    Murai Y, Kitagawa M, Hiraoka T (1995) Asbestos body formation in the human lung: distinctions, by type and size. Arch Environ Health 50:19–25PubMedCrossRefGoogle Scholar
  102. 102.
    Dodson RF, O’Sullivan M, Corn CJ (1996) Relationships between ferruginous bodies and uncoated asbestos fibers in lung tissue. Arch Environ Health 51:462–466PubMedCrossRefGoogle Scholar
  103. 103.
    Churg AM, Warnock ML (1979) Analysis of the cores of ferruginous (asbestos) bodies from the general population: III. Patients with environmental exposure. Lab Invest 40:622–626PubMedGoogle Scholar
  104. 104.
    Miller A, Teirstein AS, Bader MD, Bader RA, Selikoff IJ (1971) Talc pneumoconiosis: significance of sublight microscopic mineral particles. Am J Med 50:395–402PubMedCrossRefGoogle Scholar
  105. 105.
    Craighead JE, Mossman BT (1982) Pathogenesis of asbestos-associated diseases. N Engl J Med 306:1446–1455PubMedCrossRefGoogle Scholar
  106. 106.
    Roggli VL, Brody AR (1988) Imaging techniques for application to lung toxicology. In: Gardner DE, Crapo JD, Massaro EJ (eds) Toxicology of the lung. Raven Press, New York, pp 117–145Google Scholar
  107. 107.
    Woitowitz H-J, Manke J, Brückel B, Rödelsperger K (1986) Ferruginous bodies as evidence of occupational endangering by chrysotile asbestos? Zbl Arbeitsmed Bd 36:354–364Google Scholar
  108. 108.
    Moulin E, Yourassowsky N, Dumortier P, De Vuyst P, Yernault JC (1988) Electron microscopic analysis of asbestos body cores from the Belgian urban population. Eur Respir J 1:818–822PubMedGoogle Scholar
  109. 109.
    Holden J, Churg A (1986) Asbestos bodies and the diagnosis of asbestosis in chrysotile workers. Environ Res 39:232–236PubMedCrossRefGoogle Scholar
  110. 110.
    Case B (1994) Biological indicators of chrysotile exposure. Ann Occup Hyg 38:503–518PubMedGoogle Scholar
  111. 111.
    De Klerk NH, Musk AW, Williams V, Filion PR, Whitaker D, Shilkin KB (1996) Comparison of measures of exposure to asbestos in former crocidolite workers from Wittenoom Gorge, W. Australia. Am J Ind Med 30:579–587PubMedCrossRefGoogle Scholar
  112. 112.
    Karjalainen A, Nurminen M, Vanhala E, Vainio H, Anttila S (1996) Pulmonary asbestos bodies and asbestos fibers as indicators of exposure. Scand J Work Environ Health 22:34–38PubMedCrossRefGoogle Scholar
  113. 113.
    Crouch E, Churg A (1984) Ferruginous bodies and the histologic evaluation of dust exposure. Am J Surg Pathol 8:109–116PubMedCrossRefGoogle Scholar
  114. 114.
    Butnor KJ, Roggli VL (2011) Pneumoconioses, Ch 9. In: Leslie KO, Wick MR (eds) Practical pulmonary pathology, 2nd edn. Elsevier, New York, pp 311–337Google Scholar
  115. 115.
    Gross P, Tuma J, de Treville RTP (1971) Unusual ferruginous bodies: their formation from non-fibrous particulates and from carbonaceous fibrous particles. Arch Environ Health 22:534–537CrossRefGoogle Scholar
  116. 116.
    Roggli VL, Mastin JP, Shelburne JD, Roe MS, Brody AR (1983) Inorganic particulates in human lung. Relationship to the inflammatory response. In: Lynn WS (ed) Inflammatory cells and lung disease. CRC Press, Inc, Boca Raton, pp 29–62Google Scholar
  117. 117.
    Ramage JE, Roggli VL, Bell DY, Piantadosi CA (1988) Interstitial pneumonitis and fibrosis associated with domestic wood burning. Am Rev Respir Dis 137:1229–1232PubMedCrossRefGoogle Scholar
  118. 118.
    Roggli VL (1986) Analytical scanning electron microscopy in the investigation of unusual exposures. In: Romig AD Jr, Chambers WF (eds) Microbeam analysis. San Francisco Press, Inc, San Francisco, pp 586–588Google Scholar
  119. 119.
    Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5–21PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Dodson RF, O’Sullivan MF, Corn CJ, Williams MG Jr, Hurst GA (1985) Ferruginous body formation on a nonasbestos mineral. Arch Pathol Lab Med 109:849–852PubMedGoogle Scholar
  121. 121.
    Roggli VL, McGavran MH, Subach JA, Sybers HD, Greenberg SD (1982) Pulmonary asbestos body counts and electron probe analysis of asbestos body cores in patients with mesothelioma: a study of 25 cases. Cancer 50:2423–2432PubMedCrossRefGoogle Scholar
  122. 122.
    Wright GW, Kuschner M (1977) The influence of varying lengths of glass and asbestos fibres on tissue response in guinea pigs. In: Walton WH (ed) Inhaled particles IV. Pergamon Press, Oxford, pp 455–474Google Scholar
  123. 123.
    Morgan A, Holmes A, Davison W (1982) Clearance of sized glass fibres from the rat lung and their solubility in vivo. Ann Occup Hyg 25:317–331PubMedGoogle Scholar
  124. 124.
    Mast RW, McConnell EE, Anderson R, Chevalier J, Kotin P, Bernstein DM, Thevenaz P, Glass LR, Miller WC, Hesterberg TW (1995) Studies on the chronic toxicity (inhalation) of four types of refractory ceramic fiber in male Fischer 344 rats. Inhal Toxicol 7:425–467PubMedCrossRefGoogle Scholar
  125. 125.
    Dumortier P, Broucke I, De Vuyst P (2001) Pseudoasbestos bodies and fibers in bronchoalveolar lavage of refractory ceramic fiber users. Am J Respir Crit Care Med 164:499–503PubMedCrossRefGoogle Scholar
  126. 126.
    Sebastien P, Gaudichet A, Bignon J, Baris YI (1981) Zeolite bodies in human lungs from Turkey. Lab Invest 44:420–425PubMedGoogle Scholar
  127. 127.
    Kliment CR, Clemens K, Oury TD (2009) North American erionite-associated mesothelioma with pleural plaques and pulmonary fibrosis: a case report. Int J Clin Exp Pathol 2:407–410PubMedGoogle Scholar
  128. 128.
    Hayashi H, Kajita A (1988) Silicon carbide in lung tissue of a worker in the abrasive industry. Am J Ind Med 14:145–155PubMedCrossRefGoogle Scholar
  129. 129.
    Funahashi A, Schlueter DP, Pintar K, Siegesmund KA, Mandel GS, Mandel NS (1984) Pneumoconiosis in workers exposed to silicon carbide. Am Rev Respir Dis 129:635–640PubMedGoogle Scholar
  130. 130.
    Dufresne A, Loosereewanich P, Armstrong B, Infante-Rivard C, Perrault G, Dion C, Masse S, Begin R (1995) Pulmonary retention of ceramic fibers in silicon carbide (SiC) workers. Am Ind Hyg Assoc J 56:490–498PubMedCrossRefGoogle Scholar
  131. 131.
    Ghio AJ, Funkhouser W, Pugh CB, Winters S, Stonehuerner JD, Mahar AM, Roggli VL (2006) Pulmonary fibrosis and ferruginous bodies associated with exposure to synthetic fibers. Toxicol Pathol 34:723–729PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PathologyDuke University Medical CenterDurhamUSA

Personalised recommendations