Multi-target Data Association Using Sparse Reconstruction

  • Andrew D. Bagdanov
  • Alberto Del Bimbo
  • Dario Di Fina
  • Svebor Karaman
  • Giuseppe Lisanti
  • Iacopo Masi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8157)


In this paper we describe a solution to multi-target data association problem based on ℓ1-regularized sparse basis expansions. Assuming we have sufficient training samples per subject, our idea is to create a discriminative basis of observations that we can use to reconstruct and associate a new target. The use of ℓ1-regularized basis expansions allows our approach to exploit multiple instances of the target when performing data association rather than relying on an average representation of target appearance. Preliminary experimental results on the PETS dataset are encouraging and demonstrate that our approach is an accurate and efficient approach to multi-target data association.


Data association multi-target tracking sparse methods video surveillance 


  1. 1.
    Bar-Shalom, Y., Fortmann, T.: Tracking and Data Association. Academic-Press, Boston (1988)zbMATHGoogle Scholar
  2. 2.
    Bar-Shalom, Y., Tse, E.: Tracking in a cluttered environment with probabilistic data association. Automatica 11(5), 451–460 (1975)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process., 1:1–1:10 (January 2008)Google Scholar
  4. 4.
    Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Van Gool, L.: Online multiperson tracking-by-detection from a single, uncalibrated camera. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1820–1833 (2011)CrossRefGoogle Scholar
  5. 5.
    Cox, I., Hingorani, S.: An efficient implementation of reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(2), 138–150 (1996)CrossRefGoogle Scholar
  6. 6.
    Cox, I.J.: A review of statistical data association techniques for motion correspondence. International Journal of Computer Vision 10, 53–66 (1993)CrossRefGoogle Scholar
  7. 7.
    Doucet, A., de Freitas, N., Murphy, K., Russell, S.: Rao-blackwellised particle filtering for dynamic bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, UAI 2000, pp. 176–183. Morgan Kaufmann Publishers Inc., San Francisco (2000)Google Scholar
  8. 8.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. International Journal of Computer Vision 88(2), 303–338 (2010)CrossRefGoogle Scholar
  9. 9.
    Fortmann, T.E., Bar Shalom, Y., Scheffe, M.: Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering 8(3), 807–812 (1983)CrossRefGoogle Scholar
  10. 10.
    Kuo, C.H., Huang, C., Nevatia, R.: Multi-target tracking by on-line learned discriminative appearance models. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 685–692 (2010)Google Scholar
  11. 11.
    Ma, Z., Wan, J.: Survey of data association of moving objects tracking in video sensors network. In: 9th International Conference on Electronic Measurement Instruments, ICEMI 2009, pp. 4-250–4-254 (2009)Google Scholar
  12. 12.
    Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Supervised dictionary learning. In: NIPS, pp. 1033–1040 (2008)Google Scholar
  13. 13.
    Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: 2009 IEEE 12th International Conference on Computer Vision, September 29-October 2, pp. 1436–1443 (2009)Google Scholar
  14. 14.
    Oh, S., Russell, S., Sastry, S.: Markov chain monte carlo data association for general multiple-target tracking problems. In: 43rd IEEE Conference on Decision and Control, CDC 2004, vol. 1, pp. 735–742 (December 2004)Google Scholar
  15. 15.
    Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 31(2) (February 2009)Google Scholar
  16. 16.
    Yang, B., Nevatia, R.: Online learned discriminative part-based appearance models for multi-human tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 484–498. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (December 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Andrew D. Bagdanov
    • 1
  • Alberto Del Bimbo
    • 1
  • Dario Di Fina
    • 1
  • Svebor Karaman
    • 1
  • Giuseppe Lisanti
    • 1
  • Iacopo Masi
    • 1
  1. 1.Media Integration and Communication CenterUniversity of FlorenceFlorenceItaly

Personalised recommendations