Multisubjects Tracking by Time-of-Flight Camera

  • Piercarlo Dondi
  • Luca Lombardi
  • Luigi Cinque
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8156)

Abstract

Time-of-Flight cameras are the state of art sensors for a fast detection of depth data in a scene. This kind of sensors can be very useful for tracking, in particular in indoor ambient, since, using light in near-infrared spectrum, they are less affected by abrupt change in illumination. In this paper we propose a new method for the tracking of multiple subjects based on Kalman filter. The first step of our solution is a ToF based foreground segmentation, that retrieves all significant clusters in the scene, followed by a robust tracking system able to correctly handle occlusions and possible merging between clusters.

Keywords

Tracking Time-of-Flight camera 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oggier, T., Lehmann, M., Kaufmann, R., Schweizer, M., Richter, M., Metzler, P., Lang, G., Lustenberger, F., Blanc, N.: An all-solid-state optical range camera for 3D real-time imaging with sub-centimeter depth resolution (SwissRanger). In: Proceeding of the SPIE, vol. 5249, pp. 634–645 (2003)Google Scholar
  2. 2.
    Bianchi, L., Gatti, R., Lombardi, L., Lombardi, P.: Tracking without Background Model for Time-of-Flight Cameras. In: Wada, T., Huang, F., Lin, S. (eds.) PSIVT 2009. LNCS, vol. 5414, pp. 726–739. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Dondi, P., Lombardi, L.: Fast Real-Time Segmentation and Tracking of Multiple Subjects by Time-of-Flight Camera. In: 6th International Conference on Computer Vision Theory and Applications (VISAPP 2011), pp. 582–587 (2011)Google Scholar
  4. 4.
    Kolb, A., Barth, E., Koch, R., Larsen, R.: Time-of-Flight Cameras in Computer Graphics. Journal of Computer Graphics Forum 29, 141–159 (2010)CrossRefGoogle Scholar
  5. 5.
    CSEM: SwissRanger SR-3000 Manual, Mesa Imaging (2006)Google Scholar
  6. 6.
    Hansen, D.W., Hansen, M.S., Kirschmeyer, M., Larsen, R., Silvestre, D.: Cluster tracking with Time-of-Flight cameras. In: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW 2008), pp. 1–6. IEEE Computer Society (2008)Google Scholar
  7. 7.
    Guomundsson, S.A., Larsen, R., Aanaes, H., Pardas, M., Casas, J.R.: TOF imaging in Smart room environments towards improved people tracking. In: Proceedings of Computer Vision and Pattern Recognition Workshops (CVPRW 2008), IEEE Computer Society (2008)Google Scholar
  8. 8.
    Bevilacqua, A., Di Stefano, L., Azzari, P.: People Tracking Using a Time-of-Flight Depth Sensor. In: Proceedings of the AVSS 2006, Video and Signal Based Surveillance, p. 89. IEEE Computer Society (2006)Google Scholar
  9. 9.
    Parvizi, E., Jonathan Wu, Q.M.: Multiple Object Tracking Based on Adaptive Depth Segmentation. In: Proceedings of Canadian Conference of Computer and Robot Vision, pp. 273–277. IEEE Computer Society (2008)Google Scholar
  10. 10.
    Sabeti, L., Parvizi, E., Jonathan Wu, Q.M.: Visual Tracking Using Color Cameras and Time-of-Flight Range Imaging Sensors. Journal of Multimedia 3(2), 28–36 (2008)CrossRefGoogle Scholar
  11. 11.
    Bleiweiss, A., Werman, M.: Fusing Time-of-Flight Depth and Color for Real-Time Segmentation and Tracking. In: Kolb, A., Koch, R. (eds.) Dyn3D 2009. LNCS, vol. 5742, pp. 58–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Bianchi, L., Dondi, P., Gatti, R., Lombardi, L., Lombardi, P.: Evaluation of a foreground segmentation algorithm for 3D camera sensors. In: Foggia, P., Sansone, C., Vento, M. (eds.) ICIAP 2009. LNCS, vol. 5716, pp. 797–806. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Piercarlo Dondi
    • 1
  • Luca Lombardi
    • 1
  • Luigi Cinque
    • 2
  1. 1.Department of Electrical, Computer and Biomedical EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Computer ScienceSapienza University of RomeRomaItaly

Personalised recommendations