Skip to main content

Role of step sites on water dissociation on stoichiometric ceria surfaces

  • Regular Article
  • Chapter
  • First Online:
Book cover Marco Antonio Chaer Nascimento

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 4))

Abstract

The adsorption and dissociation of water on CeO3(111), CeO3(221), CeO3(331), and CeO3(110) has been studied by means of periodic density functional theory using slab models. The presence of step sites moderately affects the adsorption energy of the water molecule but in some cases as in CeO3(331) is able to change the sign of the energy reaction from endo- to exothermic which has important consequences for the catalytic activity of this surface. Finally, no stable molecular state has been found for water on CeO3(110) where the reaction products lead to a very stable hydroxylated surface which will rapidly become inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ladebeck JR, Wagner JP (2003) Handbook of fuel cells—fundamentals, technology and applications (ISBN: 0-471-49926-9). Vielstich W, Lamm A, Gasteiger HA (eds), vol 3, Part 2: 190–201. Wiley, Chichester

    Google Scholar 

  2. Lee SHD, Applegate DV, Ahmed S, Calderone SG, Harvey TL (2005) Int J Hydrogen Energy 30:829–842

    Article  CAS  Google Scholar 

  3. Rozovskii AY, Lin GI (2003) Top Catal 22:137–150

    Article  CAS  Google Scholar 

  4. LarrubiaVargas MA, Busca G, Costantino U, Marmottini F, Montanari T, Patrono P, Pinzari F, Ramis V (2007) J Mol Catal A Chem 266:188–197

    Article  CAS  Google Scholar 

  5. Newsome DS (1980) Catal Rev Sci Eng 21:275–315

    Article  CAS  Google Scholar 

  6. Schumacher N, Boisen A, Dahl S, Gokhale AA, Kandoi S, Grabow LC, Dumesic JA, Mavrikakis M, Chorkendorff I (2005) J Catal 229:265–275

    Article  CAS  Google Scholar 

  7. Burch R (2006) Phys Chem Chem Phys 8:5483–5500

    Article  CAS  Google Scholar 

  8. Mendes D, Garcia H, Silva VB, Mendes A, Madeira LM (2009) Ind Eng Chem Res 48:430–439

    Article  CAS  Google Scholar 

  9. Rodríguez JÁ , Evans J, Graciani J-B, Park J, Liu P, Hrbek J, Sanz JJF (2009) Phys Chem C 113:7364–7370

    Article  Google Scholar 

  10. Li L, Zhan Y, Zheng Q, Zheng Y, Lin X, Li D, Zhu J (2007) Catal Lett 118:91–97

    Article  CAS  Google Scholar 

  11. Boccuzzi F, Chiorino A, Manzoli M, Andreeva D, Tabakova T (1999) J Catal 188:176–185

    Article  CAS  Google Scholar 

  12. Liu Z-P, Jenkins SJ, King DA (2005) Phys Rev Lett 94:196102 (1–7)

    Google Scholar 

  13. Yahiro H, Murawaki K, Saiki K, Yamamoto T, Yamaura H (2007) Catal Today 126:436–440

    Article  CAS  Google Scholar 

  14. Rodríguez JA, Liu P, Hrbek J, Pe’rez M, Evans J (2008) J Mol Catal A: Chem 281:59–65

    Article  Google Scholar 

  15. Kumar P, Idem R (2007) Energy Fuels 21:522–529

    Article  CAS  Google Scholar 

  16. Rodriguez JA, Liu P, Wang X, Wen W, Hanson J, Hrbek J, Pe’rez M, Evans J (2009) Catal Today 143:45–50

    Article  CAS  Google Scholar 

  17. Wang X, Rodríguez JA, Hanson JC, Gamarra D, Martínez-Arias A, Fernández-García MJ (2006) Phys Chem B 110:428–434

    Article  CAS  Google Scholar 

  18. Chen Y, Cheng J, Hua P, Wang H (2008) Surf Sci 602:2828–2834

    Article  CAS  Google Scholar 

  19. Zhang L, Wang X, Millet J-MM, Matter PH, Ozkan US (2008) App Catal A Gen 351:1–8

    Article  CAS  Google Scholar 

  20. Du X, Yuana Z, Cao L, Zhanga C, Wanga S (2008) Fuel Processing Technol 89:131–141

    Article  CAS  Google Scholar 

  21. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K (2008) App Catal A Gen 337:48–57

    Article  CAS  Google Scholar 

  22. Knudsen J, Nilekar AU, Vang RT, Schnadt J, Kunkes EL, Dumesic JA, Mavrikakis M, Besenbacher FJ (2007) Am Chem Soc 129:6485–6490

    Article  CAS  Google Scholar 

  23. Zhao X, Ma S, Hrbek J, Rodriguez JA (2007) Surf Sci 601:2445–2452

    Article  CAS  Google Scholar 

  24. Liu P, Rodriguez JA (2007) J Chem Phys 126:164705–164712

    Article  Google Scholar 

  25. Gokhale AA, Dumesic JA, Mavrikakis M (2008) J Am Chem Soc 130:1402–1414

    Article  CAS  Google Scholar 

  26. Madon RJ, Braden D, Kandoi S, Nagel P, Mavrikakis M, Dumesic JA (2011) J Catal 281:1–11

    Article  CAS  Google Scholar 

  27. Fajin JLC, Cordeiro MNDS, Illas F, Gomes JRB (2009) J Catal 268:131–141

    Article  CAS  Google Scholar 

  28. Rodriguez JA, Ma S, Liu P, Hrbek J, Evans J, Pérez M (2007) Science 318:1757–1760

    Article  CAS  Google Scholar 

  29. Gritschneder S, Iwasawa Y, Reichling M (2007) Nanotechnology 18:044025–044030

    Article  Google Scholar 

  30. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Surf Sci 526:1–18

    Article  CAS  Google Scholar 

  31. Berner U, Schierbaum K, Jones G, Wincott P, Haq S, Thornton G (2000) Surf Sci 467:201–213

    Article  CAS  Google Scholar 

  32. Fronzi M, Piccinin S, Delley B, Traversa E, Stampfl C (2009) Phys Chem Chem Phys 11:9188–9199

    Article  CAS  Google Scholar 

  33. Yang Z, Wang Q, Wei S, Ma D, Sun Q (2010) J Phys Chem C 114:14891–14899

    Article  CAS  Google Scholar 

  34. Yang Z, Xie L, Ma D, Wang G (2011) J Phys Chem C 115:6730–6740

    Article  CAS  Google Scholar 

  35. Branda MM, Loschen C, Neyman KM, Illas F (2008) J Phys Chem C 112:17643–17651

    Article  CAS  Google Scholar 

  36. Watkins MB, Foster AS, Shluger AL (2007) J Phys Chem C 111:15337–15341

    Article  CAS  Google Scholar 

  37. Yang Z, Wang Q, Wei S, Ma D, Sun Q (2010) J Phys Chem C 114:14891–14899

    Article  CAS  Google Scholar 

  38. Yang Z, Xie L, Ma D, Wang GJ (2011) Phys Chem C 115:6730–6740

    Article  CAS  Google Scholar 

  39. Chen H-T, Choi YM, Liu M, Lin MC (2007) Chem Phys Chem 8:849–855

    CAS  Google Scholar 

  40. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) Chem Commun 46:5936–5938

    Article  CAS  Google Scholar 

  41. Branda MM, Ferullo RM, Causa` M, Illas F (2011) J Phys Chem C 115:3716–3721

    Article  CAS  Google Scholar 

  42. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  43. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1993) Phys Rev B 48:4978

    Article  CAS  Google Scholar 

  44. Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505–1509

    Article  CAS  Google Scholar 

  45. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  46. Kresse G, Joubert D (1999) Phys Rev B9(59):1758–1775

    Article  Google Scholar 

  47. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188–5192

    Article  Google Scholar 

  48. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  49. Kresse G, Hafner J (1993) Phys Rev B 48:13115–13118

    Article  CAS  Google Scholar 

  50. Kresse G, Hafner J (1994) Phys Rev B 49:14251–14269

    Article  CAS  Google Scholar 

  51. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  52. Nolan M, Grigoleit S, Sayle DC, Parker SC, Watson GW (2005) Surf Sci 576:217–229

    Article  CAS  Google Scholar 

  53. Fabris S, de Gironcoli S, Baroni S, Vicario G, Balducci G (2005) Phys Rev B 71:041102 (1–4)

    Google Scholar 

  54. Loschen C, Carrasco J, Neyman KM, Illas F (2007) Phys Rev B 75:035115 (1–8)

    Google Scholar 

  55. Lu Z, Yang Z (2010) J Phys: Condens Matter 22:475003 (1–10)

    Google Scholar 

  56. Loschen C, Migani A, Bromley ST, Illas F, Neyman KM (2008) Phys Chem Chem Phys 10:5730–5738

    Article  CAS  Google Scholar 

  57. Migani A, Loschen C, Illas F, Neyman KM (2008) Chem Phys Lett 465:106–109

    Article  CAS  Google Scholar 

  58. Migani A, Neyman KM, Illas F, Bromley ST (2009) J Chem Phys 131:64701 (1–7)

    Google Scholar 

  59. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM (2010) J Mater Chem 20:10535–10546

    Article  CAS  Google Scholar 

  60. Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  61. Henkelman G, Jonsson H (2000) J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  62. Henderson MA, Perkins CL, Engelhard MH, Thevuthasan S, Peden CHF (2003) Surf Sci 526:1–18

    Article  CAS  Google Scholar 

  63. Prin M, Pijolat M, Soustelle M, Touret O (1991) Thermochim Acta 186:273–283

    Article  CAS  Google Scholar 

  64. Zhou K, Wang X, Sun X, Peng Q, Li Y (2005) J Catal 229:206–212

    Article  CAS  Google Scholar 

  65. Yang F, Choi Y, Agnoli S, Liu P, Stacchiola DJ, Hrbek J (2011) Rodriguez J A J Phys Chem C 115:23062–23066

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Illas .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuente, S., Branda, M.M., Illas, F. (2014). Role of step sites on water dissociation on stoichiometric ceria surfaces. In: Ornellas, F., João Ramos, M. (eds) Marco Antonio Chaer Nascimento. Highlights in Theoretical Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41163-2_3

Download citation

Publish with us

Policies and ethics