Skip to main content

Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review

  • Feature Article
  • Chapter
  • First Online:

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 4))

Abstract

Photoelectrochemical cells with TiO2 electrodes to convert sunlight and water into gaseous hydrogen and oxygen are a source of clean and renewable fuel. Despite their great potential, far-from-ideal performance and poor utilization of the solar spectrum have prevented them from becoming a widespread and practical technology. We review recent experimental work that uses dynamics measurements to study limitations of photoelectrochemical cells from a fundamental level and the use of TiO2 nanotube arrays as a superior alternative to TiO2 nanoparticles. Through a combination of nanoscale size control, doping, composite materials, and the incorporation of noble-metal nanoparticles, improved performance and light harvesting are demonstrated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewis NS, Crabtree G, Nozik AJ, Wasielewski MR, Alivisatos AP (2006) Basic research needs for solar energy utilization. US Department of Energy, Washington

    Google Scholar 

  2. Fukushima A, Hasimoto K, Watanabe T (1999) TiO2 photocatalysis: fundamentals and applications, 1st edn. BKC, Tokyo

    Google Scholar 

  3. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  Google Scholar 

  4. Cowan AJ, Tang J, Leng W, Durrant JR, Klug DR (2010) Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J Phys Chem C 114(9):4208–4214

    Article  CAS  Google Scholar 

  5. Grätzel M (2005) Solar energy conversion by dye-sensitized photovoltaic cells. Inorg Chem 44(20):6841–6851

    Article  Google Scholar 

  6. Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110(11):6503– 6570

    Article  CAS  Google Scholar 

  7. Hartmann P, Lee D-K, Smarsly BM, Janek J (2010) Mesoporous TiO2: comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. ACS Nano 4(6):3147–3154

    Article  CAS  Google Scholar 

  8. Gueymard CA, Myers D, Emery K (2002) Proposed reference irradiance spectra for solar energy systems testing. Sol Energy 73(6):443–467

    Article  Google Scholar 

  9. Tamaki Y, Furube A, Murai M, Hara K, Katoh R, Tachiya M (2007) Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys Chem Chem Phys 9(12):1453–1460

    Article  CAS  Google Scholar 

  10. Murai M, Tamaki Y, Furube A, Hara K, Katoh R (2007) Reaction of holes in nanocrystalline TiO2 films evaluated by highly sensitive transient absorption spectroscopy. Catal Today 120(2): 214–219

    Article  CAS  Google Scholar 

  11. Tang J, Durrant JR, Klug DR (2008) Mechanism of photocatalytic water splitting in TiO2. reaction of water with photoholes, importance of charge carrier dynamics, and evidence for fourhole chemistry. J Am Chem Soc 130(42):13885–13891

    Article  CAS  Google Scholar 

  12. Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23(15):3381– 3399

    Article  CAS  Google Scholar 

  13. Cowan AJ, Barnett CJ, Pendlebury SR, Barroso M, Sivula K, Grätzel M, Durrant JR, Klug DR (2011) Activation energies for the rate-limiting step in water photooxidation by nanostructured α-Fe2O3 and TiO2. J Am Chem Soc 133(26):10134–10140

    Article  CAS  Google Scholar 

  14. de Jongh PE, Vanmaekelbergh D (1996) Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys Rev Lett 77(16):3427

    Article  Google Scholar 

  15. Leng WH, Barnes PRF, Juozapavicius M, O’Regan BC, Durrant JR (2010) Electron diffusion length in mesoporous nanocrystalline TiO2 photoelectrodes during water oxidation. J Phys Chem Lett 1(6):967–972

    Article  CAS  Google Scholar 

  16. Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis. Springer US, Boston

    Book  Google Scholar 

  17. Grimes CA (2007) Synthesis and application of highly ordered arrays of TiO2 nanotubes. J Mater Chem 17(15):1451–1457

    Article  CAS  Google Scholar 

  18. Macak JM, Tsuchiya H, Ghicov A, Yasuda K, Hahn R, Bauer S, Schmuki P (2007) TiO2 nanotubes: self-organized electrochemical formation, properties and applications. Curr Opin Solid State Mater Sci 11(1–2):3–18

    Article  CAS  Google Scholar 

  19. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi K-S, Grimes CA (2009) Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J Phys Chem C 113(16):6327– 6359

    Article  CAS  Google Scholar 

  20. Su Z, Zhou W (2011) Formation, morphology control and applications of anodic TiO2 nanotube arrays. J Mater Chem 21 (25):8955–8970

    Article  CAS  Google Scholar 

  21. Allam NK, Grimes CA (2009) Room temperature one-step polyol synthesis of anatase TiO2 nanotube arrays: photoelectrochemical properties. Langmuir 25(13):7234–7240

    Article  CAS  Google Scholar 

  22. Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27(7):629–637

    Article  CAS  Google Scholar 

  23. Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Highly-ordered TiO2 nanotube arrays up to 220 μm in length: use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 18(6):065707

    Article  Google Scholar 

  24. Yin H et al (2010) The large diameter and fast growth of selforganized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 21(3):035601

    Article  CAS  Google Scholar 

  25. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2004) Enhanced photocleavage of water using Titania nanotube arrays. Nano Lett 5(1):191–195

    Article  Google Scholar 

  26. Lockman Z, Ismail S, Sreekantan S, Schmidt-Mende L, MacManus- Driscoll JL (2010) The rapid growth of 3 μm long Titania nanotubes by anodization of titanium in a neutral electrochemical bath. Nanotechnology 21(5):055601

    Article  Google Scholar 

  27. Li H, Qu J, Cui Q, Xu H, Luo H, Chi M, Meisner RA, Wang W, Dai S (2011) TiO2 nanotube arrays grown in ionic liquids: highefficiency in photocatalysis and pore-widening. J Mater Chem 21(26):9487–9490

    Article  CAS  Google Scholar 

  28. Wender H, Feil AF, Diaz LB, Ribeiro CS, Machado GJ, Migowski P, Weibel DE, Dupont J, Teixeira SrR (2011) Selforganized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties. ACS Appl Mater Interfaces 3(4):1359–1365

    Article  CAS  Google Scholar 

  29. Allam NK, El-Sayed MA (2010) Photoelectrochemical water oxidation characteristics of anodically fabricated TiO2 nanotube arrays: structural and optical properties. J Phys Chem C 114(27): 12024–12029

    Article  CAS  Google Scholar 

  30. Varghese OK, Gong D, Paulose M, Grimes CA, Dickey EC (2003) Crystallization and high-temperature structural stability of titanium oxide nanotube arrays. J Mater Res 18(01):156–165

    Article  CAS  Google Scholar 

  31. Sun Y, Yan K, Wang G, Guo W, Ma T (2011) Effect of annealing temperature on the hydrogen production of TiO2 nanotube arrays in a two-compartment photoelectrochemical cell. J Phys Chem C 115(26):12844–12849

    Article  CAS  Google Scholar 

  32. Hardcastle FD, Ishihara H, Sharma R, Biris AS (2011) Photoelectroactivity and Raman spectroscopy of anodized titania (TiO2) photoactive water-splitting catalysts as a function of oxygen-annealing temperature. J Mater Chem 21(17):6337–6345

    Article  CAS  Google Scholar 

  33. Park JH, Kim S, Bard AJ (2005) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6(1):24–28

    Article  Google Scholar 

  34. Varghese OK, Grimes CA (2008) Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: a review with examples using titania nanotube array photoanodes. Sol Energy Mater Sol Cells 92(4):374–384

    Article  CAS  Google Scholar 

  35. Im JS, Lee SK, Lee Y-S (2011) Cocktail effect of Fe2O3 and TiO2 semiconductors for a high performance dye-sensitized solar cell. Appl Surf Sci 257(6):2164–2169

    Article  CAS  Google Scholar 

  36. Hamedani HA, Allam NK, Garmestani H, El-Sayed MA (2011) Electrochemical fabrication of strontium-doped TiO2 nanotube array electrodes and investigation of their photoelectrochemical properties. J Phys Chem C 115(27):13480–13486

    Article  CAS  Google Scholar 

  37. Xu L, Tang C-Q, Qian J, Huang Z-B (2010) Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO2. Appl Surf Sci 256(9):2668–2671

    Article  CAS  Google Scholar 

  38. Shankar K, Tep KC, Mor GK, Grimes CA (2006) An electrochemical strategy to incorporate nitrogen in nanostructured TiO2 thin films: modification of bandgap and photoelectrochemical properties. J Phys D Appl Phys 39(11):2361–2366

    Article  CAS  Google Scholar 

  39. Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108(50):19384–19387

    Article  CAS  Google Scholar 

  40. Lindgren T, Mwabora JM, Avendaño E, Jonsson J, Hoel A, Granqvist C-G, Lindquist S-E (2003) Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. J Phys Chem B 107(24):5709–5716

    Article  CAS  Google Scholar 

  41. Li Q, Shang JK (2009) Self-organized nitrogen and fluorine co-doped titanium oxide nanotube arrays with enhanced visible light photocatalytic performance. Environ Sci Technol 43(23): 8923–8929

    Article  CAS  Google Scholar 

  42. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11(3):1111–1116

    Article  CAS  Google Scholar 

  43. Mor GK, Prakasam HE, Varghese OK, Shankar K, Grimes CA (2007) Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett 7(8):2356–2364

    Article  CAS  Google Scholar 

  44. Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, Latempa TJ, Choi K-S, Grimes CA (2008) p-Type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8(7):1906–1911

    Article  CAS  Google Scholar 

  45. Allam NK, Poncheri AJ, El-Sayed MA (2011) Vertically oriented Ti–Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting. ACS Nano 5(6):5056–5066

    Article  CAS  Google Scholar 

  46. Nah Y-C, Ghicov A, Kim D, Berger S, Schmuki P (2008) TiO2- WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties. J Am Chem Soc 130(48): 16154–16155

    Google Scholar 

  47. Bayoumi FM, Ateya BG (2006) Formation of self-organized titania nano-tubes by dealloying and anodic oxidation. Electrochem Commun 8(1):38–44

    Article  CAS  Google Scholar 

  48. Berger S, Tsuchiya H, Schmuki P (2008) Transition from nanopores to nanotubes: self-ordered anodic oxide structures on titanium-aluminides. Chem Mater 20(10):3245–3247

    Article  CAS  Google Scholar 

  49. Mohapatra SK, Raja KS, Misra M, Mahajan VK, Ahmadian M (2007) Synthesis of self-organized mixed oxide nanotubes by sonoelectrochemical anodization of Ti-8Mn alloy. Electrochim Acta 53(2):590–597

    Article  CAS  Google Scholar 

  50. Ghicov A, Aldabergenova S, Tsuchyia H, Schmuki P (2006) TiO2–Nb2O5 nanotubes with electrochemically tunable morphologies. Angew Chem Int Ed 45(42):6993–6996

    Article  CAS  Google Scholar 

  51. Dongyan D et al (2009) Anodic fabrication and bioactivity of Nb-doped TiO2 nanotubes. Nanotechnology 20(30):305103

    Article  Google Scholar 

  52. Yasuda K, Schmuki P (2007) Electrochemical formation of selforganized zirconium titanate nanotube multilayers. Electrochem Commun 9(4):615–619

    Article  CAS  Google Scholar 

  53. Allam NK, Alamgir F, El-Sayed MA (2010) Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays. ACS Nano 4(10):5819–5826

    Article  CAS  Google Scholar 

  54. Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331(6018):746–750

    Article  CAS  Google Scholar 

  55. Wang G, Wang H, Ling Y, Tang Y, Yang X, Fitzmorris RC, Wang C, Zhang JZ, Li Y (2011) Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett 11(7): 3026–3033

    Article  CAS  Google Scholar 

  56. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  57. Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4–6):153–164

    Article  CAS  Google Scholar 

  58. Du L, Furube A, Yamamoto K, Hara K, Katoh R, Tachiya M (2009) Plasmon-induced charge separation and recombination dynamics in gold-TiO2 nanoparticle systems: dependence on TiO2 particle size. J Phys Chem C 113(16):6454–6462

    Article  CAS  Google Scholar 

  59. Furube A, Du L, Hara K, Katoh R, Tachiya M (2007) Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J Am Chem Soc 129(48):14852–14853

    Article  CAS  Google Scholar 

  60. Yu J, Dai G, Huang B (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays. J Phys Chem C 113(37):16394–16401

    Article  CAS  Google Scholar 

  61. Ingram DB, Linic S (2011) Water splitting on composite plasmonic- metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J Am Chem Soc 133(14):5202–5205

    Article  CAS  Google Scholar 

  62. Zhang Z, Yates JT (2010) Direct observation of surface-mediated electron-hole pair recombination in TiO2(110). J Phys Chem C 114(7):3098–3101

    Article  CAS  Google Scholar 

  63. Subramanian V, Wolf E, Kamat PV (2001) Semiconductormetal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J Phys Chem B 105(46):11439–11446

    Google Scholar 

  64. Lahiri D, Subramanian V, Shibata T, Wolf EE, Bunker BA, Kamat PV (2003) Photoinduced transformations at semiconductor/ metal interfaces: X-ray absorption studies of titania/gold films. J Appl Phys 93(5):2575–2582

    Article  CAS  Google Scholar 

  65. Hirakawa T, Kamat PV (2005) Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under uv-irradiation. J Am Chem Soc 127(11):3928–3934

    Article  CAS  Google Scholar 

  66. Sakai H, Kanda T, Shibata H, Ohkubo T, Abe M (2006) Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle. J Am Chem Soc 128(15): 4944–4945

    Article  CAS  Google Scholar 

  67. Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T (2008) A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 130(5):1676–1680

    Article  CAS  Google Scholar 

  68. Chuang H-Y, Chen D-H (2009) Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles. Nanotechnology 20(10):105704

    Article  Google Scholar 

  69. Furube A, Wang Z-S, Sunahara K, Hara K, Katoh R, Tachiya M (2010) Femtosecond diffuse reflectance transient absorption for dye-sensitized solar cells under operational conditions: effect of electrolyte on electron injection. J Am Chem Soc 132(19):6614– 6615

    Article  CAS  Google Scholar 

  70. Allam NK, Grimes CA (2009) Effect of rapid infrared annealing on the photoelectrochemical properties of anodically fabricated TiO2 nanotube arrays. J Phys Chem C 113(19):7996–7999

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa A. El-Sayed .

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Marco Antonio Chaer Nascimento and published as part of the special collection of articles celebrating his 65th birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Szymanski, P., El-Sayed, M.A. (2014). Some recent developments in photoelectrochemical water splitting using nanostructured TiO2: a short review. In: Ornellas, F., João Ramos, M. (eds) Marco Antonio Chaer Nascimento. Highlights in Theoretical Chemistry, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41163-2_2

Download citation

Publish with us

Policies and ethics