iPLUG: Personalized List Recommendation in Twitter

  • Lijiang Chen
  • Yibing Zhao
  • Shimin Chen
  • Hui Fang
  • Chengkai Li
  • Min Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8181)


A Twitter user can easily be overwhelmed by flooding tweets from her followees, making it challenging for the user to find interesting and useful information in tweets. The feature of Twitter Lists allows users to organize their followees into multiple subsets for selectively digesting tweets. However, this feature has not received wide reception because users are reluctant to invest initial efforts in manually creating lists. To address the challenge of bootstrapping Twitter Lists, we envision a novel tool that automatically creates personalized Twitter Lists and recommends them to users. Compared with lists created by real Twitter users, the lists generated by our algorithms achieve 73.6% similarity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belém, F., Martins, E., Pontes, T., Almeida, J., Gonçalves, M.: Associative tag recommendation exploiting multiple textual features. In: SIGIR (2011)Google Scholar
  2. 2.
    Carbonell, J., Goldstein, J.: The use of mmr, diversity-based reranking for reordering documents and producing summaries. In: SIGIR (1998)Google Scholar
  3. 3.
    Deng, H., Lyu, M.R., King, I.: A generalized co-hits algorithm and its application to bipartite graphs. In: SIGKDD (2009)Google Scholar
  4. 4.
    Guan, Z., Wang, C., Bu, J., Chen, C., Yang, K., Cai, D., He, X.: Document recommendation in social tagging services. In: WWW (2010)Google Scholar
  5. 5.
    Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recommendation based on people and tags. In: SIGIR (2010)Google Scholar
  6. 6.
    Khudyak, A., Kurland, O.: Cluster-based fusion of retrieved lists. In: SIGIR (2011)Google Scholar
  7. 7.
    Lu, C., Hu, X., Chen, X., Park, J.-R., He, T., Li, Z.: The topic-perspective model for social tagging systems. In: SIGKDD (2010)Google Scholar
  8. 8.
    Rowe, M., Wagner, C., Strohmaier, M., Alani, H.: Measuring the topical specificity of online communities. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 472–486. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Meeder, B., Karrer, B., Sayedi, A., Ravi, R., Borgs, C., Chayes, J.: We know who you followed last summer: inferring social link creation times in twitter. In: WWW (2011)Google Scholar
  10. 10.
    Otsu, N.: A threshold selection method from gray-level histograms. In: IEEE TSMC (1979)Google Scholar
  11. 11.
    Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks afficionados: user classification in twitter. In: SIGKDD (2011)Google Scholar
  12. 12.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM (1975)Google Scholar
  13. 13.
    Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation in social tagging systems using hierarchical clustering. In: RecSys (2008)Google Scholar
  14. 14.
    Venetis, P., Koutrika, G., Garcia-Molina, H.: On the selection of tags for tag clouds. In: WSDM (2011)Google Scholar
  15. 15.
    Yin, Z., Li, R., Mei, Q., Han, J.: Exploring social tagging graph for web object classification. In: SIGKDD (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lijiang Chen
    • 1
  • Yibing Zhao
    • 2
  • Shimin Chen
    • 3
  • Hui Fang
    • 4
  • Chengkai Li
    • 5
  • Min Wang
    • 6
  1. 1.HP LabsBeijingChina
  2. 2.John Hopkins UniversityBaltimoreUSA
  3. 3.Chinese Academy of SciencesBeijingChina
  4. 4.University of DelawareNewarkUSA
  5. 5.University of Texas at ArlingtonArlingtonUSA
  6. 6.Google ResearchMountain ViewUSA

Personalised recommendations