Dynamic Data Driven Ensemble for Wildfire Behaviour Assessment: A Case Study

  • Margherita Di Leo
  • Daniele de Rigo
  • Dario Rodriguez-Aseretto
  • Claudio Bosco
  • Thomas Petroliagkis
  • Andrea Camia
  • Jesús San-Miguel-Ayanz
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 413)


Wildfire information has long been collected in Europe, with particular focus on forest fires. The European Forest Fire Information System (EFFIS) of the European Commission complements and harmonises the information collected by member countries and covers the forest fire management cycle. This latter ranges from forest fire preparedness to post-fire impact analysis. However, predicting and simulating fire event dynamics requires the integrated modelling of several sources of uncertainty. Here we present a case study of a novel conceptualization based on a Semantic Array Programming (SemAP) application of the Dynamic Data Driven Application Systems (DDDAS) concept. The case study is based on a new architecture for adaptive and robust modelling of wildfire behaviour. It focuses on the module for simulating wildfire dynamics under fire control scenarios. Rapid assessment of the involved impact due to carbon emission and potential soil erosion is also shown. Uncertainty is assessed by ensembling an array of simulations which consider the uncertainty in meteorology, fuel, software modules. The event under investigation is a major wildfire occurred in 2012, widely reported as one of the worst in the Valencia region, Spain. The inherent data, modelling and software uncertainty are discussed and preliminary results of the robust data-driven ensemble application are presented. The case study suitably illustrates a typical modelling context in many European areas – for which timely collecting accurate local information on vegetation, fuel, humidity, wind fields is not feasible – where robust and flexible approaches may prove as a viable modelling strategy.


Wildfire behaviour Forest fires Integrated natural resources modelling and management Semantic Array Programming DDDAS 


  1. 1.
    San-Miguel-Ayanz, J., Schulte, E., Schmuck, G., Camia, A., Strobl, P., Liberta, G., et al.: Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). In: Tiefenbacher, J. (ed.) Approaches to Managing Disaster - Assessing Hazards, Emergencies and Disaster Impacts, ch. 5. InTech (2012)Google Scholar
  2. 2.
    de Rigo, D.: Behind the horizon of reproducible integrated environmental modelling at European scale: Ethics and practice of scientific knowledge freedom. F1000 Research (submitted, 2013)Google Scholar
  3. 3.
    de Rigo, D.: Software Uncertainty in Integrated Environmental Modelling: The role of Semantics and Open Science. Geophys. Res. Abstr. 15, 13292+ (2013)Google Scholar
  4. 4.
    de Rigo, D., Rodriguez-Aseretto, D., Bosco, C., Di Leo, M., San-Miguel-Ayanz, J.: An Architecture for Adaptive Robust Modelling of Wildfire Behaviour under Deep Uncertainty. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 367–380. Springer, Heidelberg (2013)Google Scholar
  5. 5.
    Richardson, L.A., Champ, P.A., Loomis, J.B.: The hidden cost of wildfires: Economic valuation of health effects of wildfire smoke exposure in southern California. J. For. Econ. 18(1), 14–35 (2012)Google Scholar
  6. 6.
    Herrando, S., Brotons, L., Llacuna, S.: Does fire increase the spatial heterogeneity of bird communities in Mediterranean landscapes? Ibis 145(2), 307–317 (2003)CrossRefGoogle Scholar
  7. 7.
    Torre, I., Daz, M.: Small mammal abundance in Mediterranean post-fire habitats: A role for predators? Acta Oecologica 25(3), 137–142 (2004)CrossRefGoogle Scholar
  8. 8.
    Di Piazza, G.V., Di Stefano, C., Ferro, V.: Modelling the effects of a bushfire on erosion in a mediterranean basin. Hydrol. Sci. J. 52(6), 1253–1270 (2007)CrossRefGoogle Scholar
  9. 9.
    Moreira, F., Russo, D.: Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landsc. Ecol. 22(10), 1461–1476 (2007)CrossRefGoogle Scholar
  10. 10.
    Acácio, V., Holmgren, M., Rego, F., Moreira, F., Mohren, G.M.J.: Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands? Agrofor. Syst. 76(2), 389–400 (2009)CrossRefGoogle Scholar
  11. 11.
    Estreguil, C., Caudullo, G., de Rigo, D., Whitmore, C., San-Miguel-Ayanz, J.: Reporting on European forest fragmentation: Standardized indices and web map services. IEEE Earthzine 5(2), 384031+ (2012); 2nd quarter theme: Forest Resource InformationGoogle Scholar
  12. 12.
    Estreguil, C., Caudullo, G., de Rigo, D., San-Miguel-Ayanz, J.: Forest landscape in Europe: Pattern, fragmentation and connectivity. EUR Scientific and Technical Research 25717(JRC 77295) (2013)Google Scholar
  13. 13.
    Estreguil, C., de Rigo, D., Caudullo, G.: Towards an integrated and reproducible characterisation of habitat pattern. Environmental Model. & Software (submitted, 2013)Google Scholar
  14. 14.
    Bosco, C., de Rigo, D., Dijkstra, T., Sander, G., Wasowski, J.: Multi-Scale Robust Modelling of Landslide Susceptibility: Regional Rapid Assessment and Catchment Robust Fuzzy Ensemble. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 321–335. Springer, Heidelberg (2013)Google Scholar
  15. 15.
    de Rigo, D., Bosco, C.: Architecture of a Pan-European Framework for Integrated Soil Water Erosion Assessment. In: Hřebíček, J., Schimak, G., Denzer, R. (eds.) Environmental Software Systems. IFIP AICT, vol. 359, pp. 310–318. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., Panagos, P.: Modelling Soil Erosion at European Scale. Towards Harmonization and Reproducibility (in prep.)Google Scholar
  17. 17.
    Shakesby, R., Doerr, S.: Wildfire as a hydrological and geomorphological agent. Earth Sci. Rev. 74(3-4), 269–307 (2006)CrossRefGoogle Scholar
  18. 18.
    Ice, G.G., Neary, D.G., Adams, P.W.: Effects of wildfire on soils and watershed processes. J. Forestry 102(5), 16–20 (2004)Google Scholar
  19. 19.
    Moody, J.A., Martin, D.A., Haire, S.L., Kinner, D.A.: Linking runoff response to burn severity after a wildfire. Hydrol. Proces. 22(13), 2063–2074 (2008)CrossRefGoogle Scholar
  20. 20.
    Candela, A., Aronica, G., Santoro, M.: Effects of forest fires on flood frequency curves in a Mediterranean catchment. J. Hydrol. Sci. 50(2), 193–206 (2005)CrossRefGoogle Scholar
  21. 21.
    Rulli, M.C., Rosso, R.: Hydrologic response of upland catchments to wildfires. Adv. Water Resour. 30(10), 2072–2086 (2007)CrossRefGoogle Scholar
  22. 22.
    Smith, H.G., Sheridan, G.J., Lane, P.N.J., Nyman, P., Haydon, S.: Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396(1-2), 170–192 (2011)CrossRefGoogle Scholar
  23. 23.
    de Rigo, D.: Integrated Natural Resources Modelling and Management: minimal redefinition of a known challenge for environmental modelling. Excerpt from the Call for a shared research agenda toward scientific knowledge freedom, Maieutike Research InitiativeGoogle Scholar
  24. 24.
    de Rigo, D.: Semantic Array Programming for Environmental Modelling: Application of the Mastrave Library. In: Int. Congress on Environmental Modelling and Software. Managing Resources of a Limited Plant, Pathways and Visions under Uncertainty, Sixth Biennial Meeting, pp. 1167–1176 (2012)Google Scholar
  25. 25.
    de Rigo, D.: Semantic array programming with Mastrave - introduction to semantic computational modelling (2012)Google Scholar
  26. 26.
    Darema, F.: Dynamic Data Driven Applications Systems: A New Paradigm for Application Simulations and Measurements. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 662–669. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Denham, M., Cortés, A., Margalef, T., Luque, E.: Applying a Dynamic Data Driven Genetic Algorithm to Improve Forest Fire Spread Prediction. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 36–45. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  28. 28.
    Hollingsworth, A., Engelen, R., Textor, C., Benedetti, A., Boucher, O., Chevallier, F., Simmons, A.J.: Toward a monitoring and forecasting system for atmospheric composition. Bull. Amer. Meteor. Soc. 89(8), 1147–1164 (2008)CrossRefGoogle Scholar
  29. 29.
    Bouttier, F.: The Météo-France NWP system: Description, recent changes and plans. CNRM (2010)Google Scholar
  30. 30.
    Corti, P., San-Miguel-Ayanz, J., Camia, A., McInerney, D., Boca, R., Di Leo, M.: Fire news management in the context of the European Forest Fire Information System (EFFIS). In: Proceedings of Quinta Conferenza Italiana Sul Software Geografico e Sui Dati Geografici Liberi, GFOSS DAY 2012 (2012)Google Scholar
  31. 31.
    Barnes, W.L., Xiong, X., Salomonson, V.V.: Status of terra MODIS and aqua MODIS. Advances in Space Research 32(11), 2099–2106 (2003)CrossRefGoogle Scholar
  32. 32.
    Rodriguez-Aseretto, D., de Rigo, D., Di Leo, M., Cortes, A., San-Miguel-Ayanz, J.: A data-driven model for large wildfire behaviour prediction in Europe. Procedia Computer Science 18, 1861–1870 (2013)CrossRefGoogle Scholar
  33. 33.
    Lara, M., Doyen, L.: Sustainable Management of Natural Resources: Mathematical Models and Methods. Springer (2008)Google Scholar
  34. 34.
    Rani, D., Moreira, M.: Simulation Optimization Modeling: A Survey and Potential Application in Reservoir Systems Operation. Water Resour. Manag. 24(6), 1107–1138 (2010)CrossRefGoogle Scholar
  35. 35.
    Ferreira, L., Constantino, M., Borges, J.G.: A stochastic approach to optimize Maritime pine (Pinus pinaster Ait.) stand management scheduling under fire risk. An application in Portugal. Ann. Oper. Res, 1–19 (2011)Google Scholar
  36. 36.
    Minas, J.P., Hearne, J.W., Handmer, J.W.: A review of operations research methods applicable to wildfire management. Int. J. Wildland Fire 21(3), 189+ (2012)Google Scholar
  37. 37.
    de Rigo, D., Rizzoli, A.E., Soncini-Sessa, R., Weber, E., Zenesi, P.: Neuro-dynamic programming for the efficient management of reservoir networks. In: Proceedings of MODSIM 2001, Int. Congress on Modelling and Simulation held in Canberra, Australia, vol. 4, pp. 1949–1954 (2001) ISBN: 0-867405252Google Scholar
  38. 38.
    de Rigo, D., Castelletti, A., Rizzoli, A.E., Soncini-Sessa, R., Weber, E.: A selective improvement technique for fastening neuro-dynamic programming in water resources network management. IFAC-PapersOnLine 16, 7–12 (2005)Google Scholar
  39. 39.
    Castelletti, A., de Rigo, D., Tepsich, L., Soncini-Sessa, R., Weber, E.: On-Line design of water reservoir policies based on inflow prediction. IFAC-PapersOnLine 17, 14540–14545 (2008)Google Scholar
  40. 40.
    Andersson, E., Thpaut, J.-N.: ECMWFs 4D-Var data assimilation system the genesis and ten years in operations. ECMWF Newsletter 115, 8–12 (2008)Google Scholar
  41. 41.
    Isaksen, L., Haseler, J., Buizza, R., Leutbecher, M.: The new Ensemble of Data Assimilations. ECMWF Newsletter 123, 15–21 (2010)Google Scholar
  42. 42.
    Miller, M., Buizza, R., Haseler, J., Hortal, M., Janessen, P., Untch, A.: Increased resolution in the ECMWF deterministic and ensemble prediction systems, ECMWF Newsletter No. 124 pp.10-16. ECMWF, UK (2010)Google Scholar
  43. 43.
    Molteni, F., Buizza, R., Palmer, T.N., Petroliagis, T.I.: The ECMWF Ensemble Prediction System: Methodology and validation. Q. J. R. Meteorol. Soc. 122, 73–119 (1996)CrossRefGoogle Scholar
  44. 44.
    Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G., Vitart, F.: The new ECMWF VAREPS. Q. J. Roy. Meteorol. Soc. 133, 681–695 (2007)CrossRefGoogle Scholar
  45. 45.
    Majewski, D.: The new global icosahedral hexagonal grid point model GME of the Deutscher Wetterdienst. In: Proc. ECMWF Seminar on Recent Developments in Numerical Methods for Atmospheric Modelling, pp. 173–201. ECMWF, Reading (1998)Google Scholar
  46. 46.
    Majewski, D., Liermann, D., Prohl, P., Ritter, B., Buchhold, M., Hanisch, T., Paul, G., Wergen, W., Baumgardner, J.: The operational global icosahedral-hexagonal grid point model GME: Description and high resolution tests. Mon. Wea. Rev. 130, 319–338 (2002)CrossRefGoogle Scholar
  47. 47.
    de Rigo, D., Guariso, G.: Rewarding Open Science: A Collaborative Review System for Semantically-Enhanced Free Software and Environmental Data Modelling (in prep., 2013)Google Scholar
  48. 48.
    Bevins, C.D.: FireLib user manual and technical reference. Systems for Environmental Management (1996)Google Scholar
  49. 49.
    Rothermel, R.: How to predict the spread and intensity of forest and range fires. Ogden, UT, USA: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station (1983)Google Scholar
  50. 50.
    Neteler, M., Bowman, M.H., Landa, M., Metz, M.: GRASS GIS: A multi-purpose open source GIS. Environmental Modelling & Software 31, 124–130 (2012)CrossRefGoogle Scholar
  51. 51.
    Xu, J., Lathrop, R.G.: GRASS GIS manual: r.spread. In: GRASS GIS 6.4.3svn Reference Manual (2006)Google Scholar
  52. 52.
    Xu, J.: GRASS GIS manual: r.ros. In: GRASS GIS 6.4.3svn Reference Manual (2009)Google Scholar
  53. 53.
    Andrews, P., LLoyd, P.: Fire modeling and information system technology. Int. J. Wildland Fire 10(4), 343–352 (2001)CrossRefGoogle Scholar
  54. 54.
    Albini, F.A.: Estimating wildfire behavior and effects. Gen. Tech. Rep. INT-30. Ogden, Utah: Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station (1976)Google Scholar
  55. 55.
    Camia, A., et al.: Development of the fuel type map of Europe. EUR Scientific and Technical Research (in prep.)Google Scholar
  56. 56.
    Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station (1972)Google Scholar
  57. 57.
    Certini, G.: Effects of fire on properties of forest soils: A review. Oecologia 143, 1–10 (2005)CrossRefGoogle Scholar
  58. 58.
    DeBano, L.F.: The role of fire and soil heating on water repellency in wildland environments: A review. J. Hydrol. 231-232, 195–206 (2000)CrossRefGoogle Scholar
  59. 59.
    Larsen, I.J., MacDonald, L.H.: Predicting post-fire sediment yields at the hillslope scale: testing RUSLE and disturbed WEPP. Water Resour. Res. 43(11), W11412 (2007)Google Scholar
  60. 60.
    Scott, D.F., Van Wyk, D.B.: The effects of wildfire on soil wettability and hydrological behavior of an afforested catchment. J. Hydrol. 121, 256–293 (1990)CrossRefGoogle Scholar
  61. 61.
    Barbosa, P., Camia, A., Kucera, J., Libert, G., Palumbo, I., San-Miguel-Ayanz, J., Schmuck, G.: Assessment of Forest Fire Impacts and Emissions in the European Union Based on the European Forest Fire Information System. Developments in Environmental Science 8, 197–208 (2008)CrossRefGoogle Scholar
  62. 62.
    de Rigo, D., Barredo, J.I., Busetto, L., Caudullo, G., San-Miguel-Ayanz, J.: Continental-Scale Living Forest Biomass and Carbon Stock: a Robust Fuzzy Ensemble of IPCC Tier 1 Maps for Europe. In: Hřebíček, J., Schimak, G., Kubásek, M., Rizzoli, A. (eds.) ISESS 2013. IFIP AICT, vol. 413, pp. 271–284. Springer, Heidelberg (2013)Google Scholar
  63. 63.
    Bosco, C., Rusco, E., Montanarella, L., Panagos, P.: Soil erosion in the Alpine area: risk assessment and climate change. Studi Trent. Sci. Nat. 85, 117–123 (2009)Google Scholar
  64. 64.
    Angima, S.D., Stott, D.E., ONeill, M.K., Ong, C.K., Weesies, G.A.: Soil erosion prediction using RUSLE for central Kenyan highland conditions. Agriculture Ecosystems and Environment 97, 295–308 (2003)CrossRefGoogle Scholar
  65. 65.
    Kinnell, P.I.: Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review. Journal of Hydrology 385, 384–397 (2010)CrossRefGoogle Scholar
  66. 66.
    Heineke, H.J., Eckelmann, W., Thomasson, A.J., Jones, R.J.A., Montanarella, L., Buckley, B.: Land Information Systems: Developments for planning the sustainable use of land resources. Office for Official Publications of the European Communities. EUR 17729 EN (1998)Google Scholar
  67. 67.
    FAO, IIASA, ISRIC, ISSCAS, JRC: World Soil Database (version 1.1). FAO, Rome, Italy and IIASA, Laxenburg, Austria (2009)Google Scholar
  68. 68.
    Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R.: The Shuttle Radar Topography Mission. Reviews of Geophysics 45, RG2004 (2007)Google Scholar
  69. 69.
    European Environment Agency: Corine Land Cover 1990, 2000 and 2006 raster data version 15 (August 2011)Google Scholar
  70. 70.
    Haylock, M.R., Hofstra, N., Klein Tank, A.M.G., Klok, E.J., Jones, P.D., New, M.: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res. (Atmospheres) 113, D20119 (2008)Google Scholar
  71. 71.
    Panagos, P., Jones, A., Bosco, C., Senthil Kumar, P.S.: European digital archive on soil maps (EuDASM): Preserving important soil data for public free access. Int. J. of Digital Earth 4(5) (2011)Google Scholar
  72. 72.
    Bosco, C., Rusco, E., Montanarella, L., Oliveri, S.: Soil erosion risk assessment in the alpine area according to the IPCC scenarios. In: Threats to Soil Quality in Europe. EUR 23438 EN, pp. 47–58 (2008)Google Scholar
  73. 73.
    Cebecauer, T., Hofierka, J.: The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology 98, 187–198 (2008)CrossRefGoogle Scholar
  74. 74.
    Terranova, O., Antronico, L., Coscarelli, R., Iaquinta, P.: Soil erosion risk scenarios in the Mediterranean environment using RUSLE and GIS: An application model for Calabria (southern Italy). Geomorphology 112, 228–245 (2009)CrossRefGoogle Scholar
  75. 75.
    Rodriguez-Aseretto, R., Cortés, A., Margalef, T., Luque, E.: An Adaptive System for Forest Fire Behavior Prediction. In: 11th IEEE Int. Conf. on Comp. Sci. Eng., CSE 2008, pp. 275–282. IEEE (2008)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Margherita Di Leo
    • 1
  • Daniele de Rigo
    • 1
    • 2
  • Dario Rodriguez-Aseretto
    • 1
  • Claudio Bosco
    • 3
  • Thomas Petroliagkis
    • 1
  • Andrea Camia
    • 1
  • Jesús San-Miguel-Ayanz
    • 1
  1. 1.European Commission, Joint Research CentreInstitute for Environment and SustainabilityIspraItaly
  2. 2.Dipartimento di Elettronica e InformazionePolitecnico di MilanoMilanoItaly
  3. 3.Department of Civil and Building EngineeringLoughborough UniversityLoughboroughUnited Kingdom

Personalised recommendations