Skip to main content

Entry, Descent and Landing Systems

  • Chapter
  • First Online:
The International Handbook of Space Technology

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 10k Accesses

Abstract

The process of delivering a payload from an interplanetary transfer trajectory or from a planetary orbit to a stationary position on the ground may generally be split into three phases: entry, descent, and landing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Milos FS, Chen YK, Squire TH, Brewer RA. Analysis of Galileo Probe Heatshield Ablation and Temperature Data. Journal of Spacecraft and Rockets. 1999; 36(3).

    Google Scholar 

  2. Thurman SW. Surveyor Spacecraft Automatic Landing System. In 27th Annual AAS Guidance and Control Conference; 2004; Breckenridge, Colorado.

    Google Scholar 

  3. Spencer DA, Blanchard RC, Braun RD, Kallemeyn PH, Thurman SW. Mars Pathfinder Entry, Descent and Landing Reconstruction. Journal of Spacecraft and Rockets. 1999; Vol 36 No 3.

    Google Scholar 

  4. Crowder RS, Moote JD. Apollo Entry Aerodynamics. Journal of Spacecraft and Rockets. 1969; Vol 6 No 3.

    Google Scholar 

  5. NASA. Press Kit - Apollo 7. Press Kit. NASA; 1968. Report No.: 68-168 K.

    Google Scholar 

  6. Sutton K, Graves RA. A General Stagnation Point Convective Heating Equation for Arbitrary Gas Mixtures. Technical Report. Washinton D.C.: NASA; 1971. Report No.: NASA TR-376.

    Google Scholar 

  7. Tauber ME, and Sutton K. Stagnation-Point Radiative Heating Relations for Earth and Mars Entries. Journal of Spacecraft and Rockets. 1991.; vol. 28, no. 1, pp. 40–42.

    Google Scholar 

  8. Laub B, Venkatapathy E. Thermal Protection System Technology and Facility Needs for Demanding Future Planetary Missions. In International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science; 2003; Lisbon, Portugal.

    Google Scholar 

  9. Marraffa L, Kassing D, Baglioni P, Wilde D, Walther S, Pitchkhadze K, et al. Inflatable Re-Entry Technologies: Flight Demonstration and Future Prospects. ESA Bulletim. 2000 Aug;(103).

    Google Scholar 

  10. Brown GJ, Epp C, Graves C, Lingard JS, Darley MG, Jordan K. Hypercone Inflatable Supersonic Decelerator. In 17th AIAA Aerodynamic Decelerator Systems Technology Conference; 2003; Monterey, CA: AIAA 2003-2167.

    Google Scholar 

  11. Cruz JR, Lingard JS. Aerodynamic Decelerators for Planetary Exploration: Past, Present and Future. In AIAA Guidance, Navigation, and Control Conference and Exhibit; 2006: AIAA 2006-6792.

    Google Scholar 

  12. Vincze J. Gemini Spacecraft Parachute Landing System. Technical Note. Washington D.C.: NASA; 1966. Report No.: NASA TN D-3496.

    Google Scholar 

  13. Knacke TW. The Apollo Parachute Landing System. In AIAA Second Aerodynamic Decelerator Systems Conference; 1968; El Centro, California. p. TP-131.

    Google Scholar 

  14. Bienstock BJ. Pioneer Venus and Galileo Entry Probe Heritage. In International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science; 2003; Lisbon, Portugal.

    Google Scholar 

  15. Smith J, Witkowski A, P. W. Parafoil Recovery Subsystem for the Genesis Space Return Capsule. In 16th AIAA Aerodynamic Decelerator Systems Technology Conference; 2001; Boston MA: AIAA 2001-2017.

    Google Scholar 

  16. Stein JM. Parachute Testing for the NASA X-38 Crew Return Vehicle. In 36th Annual International Symposium; 2005; Fort Worth, TX; United States.

    Google Scholar 

  17. Ewing EG, Bixby HW, Knacke TW. Recovery Systems Design Guide. Technical Report. Dayton, OH: Air Force Flight Dynamics Laboratory; 1978. Report No.: AFFDL-TR-78-151.

    Google Scholar 

  18. Mitcheltree R, Bruno R, Slimko E, Baffes C, Konefat E, Witkowski A. High Altitude Test Program for a Mars Subsonic Parachute. In 18th AIAA Aerodynamic Decelerator Systems Technology Conference; 2005; Munich: AIAA 2005-1659.

    Google Scholar 

  19. Fallon II EJ. System Design Overview of the Mars Pathfinder Parachute Decelerator System. In 14th AIAA Aerodynamic Deecelerator Systems Technology Conference; 1997; San Francisco, CA: AIAA 97-1511.

    Google Scholar 

  20. Witkowski A, Kandis M, Bruno R, and Cruz JR. Mars Exploration Rover Parachute System Performance. In 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar; 2005; Munich: AIAA 2005-1605.

    Google Scholar 

  21. Lingard JS, Underwood JC. The Effects of Low Density Atmospheres on the Aerodynamic Coefficients of Parachutes. In 13th AIAA Aerodynamic Decelerator Systems Technology Conference; 1995; Clearwater Beach, FL: AIAA 95-1556.

    Google Scholar 

  22. Lingard JS, Darley MG, Underwood JC. Simulations of Mars Supersonic Parachute Performance and Dynamics. In 19th AIAA Aerodynamic Decelerator Systems Technology Conference; 2007; Williamsburg, VA: AIAA 2007-2507.

    Google Scholar 

  23. Lingard JS. A Semi-Empirical Theory to Predict the Load-Time History of an Inflating Parachute. In 8th AIAA Aerodynamic Decelerator and Balloon Technology Conference; 1984; Hyannis, MA: AIAA 84-0814.

    Google Scholar 

  24. Doherr K. Extended Parachute Opening Shock Estimation. In 17th AIAA Aerodynamic Decelerator Systems Technology Conference; 2003; Monterey, CA: AIAA 2003-2173.

    Google Scholar 

  25. Pflanz E. Zur Bestimmung der Verzogerungskrafte bei Entfaltung von Lastenfallschirmen.; 1942. Report No.: ZWB FB 1704.

    Google Scholar 

  26. McVey DF, Wolf DF. Analysis of Deployment and Inflation of Large Ribbon Parachutes. Journal of Aircraft. 1974; 11 No 2.

    Google Scholar 

  27. Ludtke WP. Notes on Generix Parachute Opening Force Analysis.; 1986. Report No.: NSWC TR-86-142.

    Google Scholar 

  28. Murrow HN, McFall Jr JC. Some Test Results from the NASA Planetary Entry Parachute Program. Journal of Spacecraft and Rockets. 1969; 6 No 5.

    Google Scholar 

  29. Underwood JC. Development Testing of Disk-Gap-Band Parachutes for the Huygens Probe. In 13th AIAA Aerodynamic Decelerator Systems Technology Conference; 1995; Clearwater Beach, FL: AIAA 95-1549.

    Google Scholar 

  30. Witkowski A. The Stardust Sample Return Capsule Parachute Recovery System. In 15th CEAS/AIAA Aerodynamic Decelerator Systems Technology Conference; 1999; Toulouse, France: AIAA 99-1741.

    Google Scholar 

  31. Lingard JS. The Performance and Design of Ram-Air Gliding Parachutes. Technical Report. Farnborough, UK: Royal Aircraft Establishment; 1981. Report No.: RAE TR-81103.

    Google Scholar 

  32. Pleasants JE. Parachute Mortar Design. Journal of Spacecraft and Rockets.; Vol. 11, p.246.

    Google Scholar 

  33. Manning RM, and Adler M. Landing on Mars. In AIAA Space 2005 Conference; 2005; Long Beach, CA: AIAA 2005-6742.

    Google Scholar 

  34. Steltzner AD, Burkhart PD, Chen A, Comeaux KA, Guernsey CS, Kipp DM, et al. Mars Science Laboratory Entry, Descent and Landing System Overview. In 7th International Planetary Probe Workshop; 2010; Barcelona, Spain.

    Google Scholar 

  35. Steltzner A, Desai P, Lee W, Bruno R. The Mars Exploration Rovers entry descent and landing and the use of aerodynamic decelerators. In 17th AAIAA Aerodynamic Decelerator Systems Conference; 2003; Monterey, CA: AIAA 2003-2125.

    Google Scholar 

  36. Lutz T, Westerholt U, Noeding P, Ransom S, Köhler J. Application of Auto-Rotation for Entry, Descent, and Landing on Mars. In 7th International Planetary Probe Workshop; 2010; Barcelona, Spain.

    Google Scholar 

  37. Lorenz RD. A Review of Balloon Concepts for Titan. Journal of the British Interplanetary Society. 2008; 61.

    Google Scholar 

  38. Rivellini T. The Challenges of Landing on Mars. Bridge(USPS 551-240), National Academy of Engineering. 2004; 34(4).

    Google Scholar 

  39. D. C, C. S, M. G. Development and Evaluation of the Mars Pathfinder Inflatable Airbag Landing System. Acta Astronautica. 2002 May; 50(10).

    Google Scholar 

  40. Stein J, Sandy C. Recent Developments in Inflatable Airbag Impact Attenuation Systems for Mars Exploration. In 2nd International Symposium Atmospheric Reentry Vehicles and Systems; 2003; Arcachon, France: AAAF-61.

    Google Scholar 

  41. Huxley-Reynard CS. An Airbag System for the Beagle2 Mars Probe. In 16th AIAA Aerodynamic Decelerator Systems Technology Conference; 2001; Boston, MA: AIAA 2001-2046.

    Google Scholar 

  42. Tutt B, Sandy C, Corliss J. Status of the Development of an Airbag Landing System for the Orion Crew Module. In 20th AIAA Aerodynamic Decelerator Systems Technology Conference; 2009; Seattle, WA: AIAA 2009-2923.

    Google Scholar 

  43. Gardinier DJ, Taylor AP. Design and Testing of the K-1 Reusable launch Vehicle Landing System Airbags. In 15th AIAA Aerodynamic Decelerator Systems Technology Conference; 1999; Toulouse, France: AIAA 97-1757.

    Google Scholar 

  44. Murri DG. Simulation Framework for Rapid Entry, Descent and Landing (EDL) Analysis. Hampton, VA: NASA Langley Research Center; 2010. Report No.: NASA/TM-2010-216867.

    Google Scholar 

  45. St. John-Olcayto E, Johns G, Pidgeon A, Philippe C. EAGLE: An Extensible, End to End Simulation and Evaluation Framework for Planetary E/DLS. In International Planetary Probe Workshop 2010: IPPW7; 2010; Barcelona.

    Google Scholar 

  46. Kliore A. The Venus international reference atmosphere. Advances in Space Research. 1986.

    Google Scholar 

  47. Justh HL, Justus CG, Keller VW. Global Reference Atmosphere Models including Thermospheres for Mars, Venus and Earth. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit; 2006; Keystone, CO.

    Google Scholar 

  48. International Organisation for Standardization. Standard Atmosphere. Standard.; 1975. Report No.: ISO 2533:1975.

    Google Scholar 

  49. Department of Defense. Global Climatic Data for Developing Military Products. Department of Defense Handbook.; 1997. Report No.: MIL-HDBK-310.

    Google Scholar 

  50. Picone JM, Hedin AE, Drob DP, Aikin AC. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys Res. 220; 107(A12).

    Google Scholar 

  51. Justus CG, Leslie FW. The NASA MSFC Earth Global Reference Atmospheric Model - 2007 Version.; 2008. Report No.: NASA/TM-2008-215581.

    Google Scholar 

  52. Lellouche E, Hunten DM. Titan Atmosphere Engineering Model.; 1987. Report No.: ESLAB 87-199.

    Google Scholar 

  53. Yelle RV, Strobell DF, Lellouch E, Gautier D. Engineering Models for Titan’s Atmosphere.; 1994.

    Google Scholar 

  54. AIAA. Guide to Reference and Standard Atmosphere Modes. Guide.; 2010. Report No.: AIAA G-003C-2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Lingard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lingard, S., Underwood, J. (2014). Entry, Descent and Landing Systems. In: Macdonald, M., Badescu, V. (eds) The International Handbook of Space Technology. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41101-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41101-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41100-7

  • Online ISBN: 978-3-642-41101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics