Skip to main content

Thermal Systems

  • Chapter
  • First Online:
The International Handbook of Space Technology

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 10k Accesses

Abstract

One of the problems that needs to be solved in order to achieve a successful space mission is to ensure suitable thermal behavior of all the spacecraft subsystems, which may not seem critical or problematic in the case of Earth-based equipment. However, it is crucial in the space environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 509.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 649.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Çengel, Y.A, “Heat and Mass Transfer: A Practical Approach,” McGraw Hill, New York, 2007.

    Google Scholar 

  2. Incropera, F.P., DeWitt, D.P., Bergman, L.T., and Lavine, A.S., “Fundamentals of Heat and Mass Transfer,” John Wiley & Sons, New York, 2007.

    Google Scholar 

  3. Holman, J., “Heat Transfer,” McGraw Hill, New York, 2010.

    Google Scholar 

  4. Modest, M.F., “Radiative Heat Transfer,” Academic Press, Amsterdam, 2003.

    Google Scholar 

  5. Howel, J.R., Siegel, R., and Menguc, M.P., “Thermal Radiation Heat Transfer,” CRC Press, Boca Raton, 2011.

    Google Scholar 

  6. “Data for selection of space materials and processes”, ECSS-Q-70-71A rev. 1. June 2004.

    Google Scholar 

  7. “Spacecraft Thermal Control Design Data Handbook”, ESA PSS-03-108, Issue 1, 1989.

    Google Scholar 

  8. “Terrestrial Environment (Climatic) Criteria Handbook for Use in Aerospace Vehicle Development,” NASA-HDBK-1001, August 2000.

    Google Scholar 

  9. “Space Engineering - Space Environment”, ECSS-E-ST-10-04C, November 2008.

    Google Scholar 

  10. “Space environment (natural and artificial). Process for determining solar irradiances,” ISO 21348, May 2007.

    Google Scholar 

  11. “Space Engineering. Mechanical – Part 1: Thermal Control,” ECSS-E-30 Part 1A, April 2000.

    Google Scholar 

  12. “Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables,” ASTM E490-00a, April 2006.

    Google Scholar 

  13. Anderson, B.J., Justus, C.G., and Batts, G.W., “Guidelines for the Selection of Near-Earth Thermal Environment Parameters for Spacecraft Design,” NASA TM 2001/211221, October 2001.

    Google Scholar 

  14. Gilmore, D.G., ed., “Spacecraft Thermal Control Handbook, Vol. I: Fundamental Technologies,” 2nd edn., The Aerospace Press, El Segundo, 2002.

    Google Scholar 

  15. Meseguer, J., Pérez-Grande, I., and Sanz-Andrés, A., “Spacecraft Thermal Control,” Woodhead Publishing, Oxford, 2011.

    Google Scholar 

  16. Touloukian, Y.S., DeWitt, D.P., and Hernicz, R.S., “Thermal Radiative Properties. Coatings,” Thermophysical Properties of Matter, Vol. 9, IFI/Plenum, New York, 1972.

    Google Scholar 

  17. Henninger, J.H., “Solar Absorptance and Thermal Emittance of Some Common Spacecraft Thermal-Control Coatings,” NASA RP-1121, April 1984.

    Google Scholar 

  18. Kauder, L., “Spacecraft Thermal Control Coatings References” NASA/TP–2005–212792, December 2005

    Google Scholar 

  19. Sanz-Andrés, A., Santiago-Prowald, J., and Ayuso-Barea, A., “Spacecraft Launch Depressurization Loads,” Journal of Spacecraft and Rockets, Vol. 34, No. 6, 1997, pp. 805-810. doi: 10.2514/2.3290

  20. Finckenor, M.M., and Dooling, D., “Multilayer Insulation Material Guidelines”, NASA/TP-1999-209263, April 2009.

    Google Scholar 

  21. Domingo, M., and Ramirez, J.J., “Mechanical design and test of ROSETTA Platform Louvres,” Proceedings of the 10th European Space Mechanisms and Tribology Symposium, ESA SP-524, September 2003, pp. 289-292.

    Google Scholar 

  22. Silverstein, C., “Design and Technology of Heat Pipes for Cooling and Heat Exchange,” Taylor & Francis, Washington, 1992.

    Google Scholar 

  23. Zalba, B., Marin, J.M., Cabeza, L.F., and Mehling, H., “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications,” Applied Thermal Engineering Vol. 23, 2003, pp. 251-283.

    Google Scholar 

  24. Rinehart, G.H., “Design characteristics and fabrication of radioisotope heat sources for space missions,” Progress in Nuclear Energy, Vol. 39, 2001, pp. 305-319.

    Google Scholar 

  25. Hengeveld, D.W., Mathison, M.M., Braun, J.E., Groll, E.A., and Williams, A.D., “Review of Modern Spacecraft Thermal Control Technologies,” HVAC&R Research, Vol. 16, 2010, pp. 189-220.

    Google Scholar 

  26. Scott, A.W., “Cooling of Electronic Equipment,” John Wiley & Sons, New York, 1974, Chap. 8, pp. 215-227.

    Google Scholar 

  27. Collaudin, B., and Rando, N., “Cryogenics in space: a review of the missions and of the technologies,” Cryogenics, Vol. 40, 2000, pp. 797-819.

    Google Scholar 

  28. Donabedian, M., ed., “Spacecraft Thermal Control Handbook, Vol. II, Cryogenics,” The Aerospace Press, El Segundo, 2003.

    Google Scholar 

  29. Ravex, A., and Trollier, T., “Recent developments on cryocoolers in Europe,” Proceedings of the Twentieth International Cryogenic Engineering Conference, ICEC 20, Beijing, 2005, pp. 127-136.

    Google Scholar 

  30. Laub, B., and Venkatapathy, E., “Thermal Protection System technology and facility needs for demanding future planetary mission,” Proceedings of the International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory and Science (IPPW1), ESA SP-544, February 2004, pp. 239-247.

    Google Scholar 

  31. Poncy, J., Lebleu, D., Arfi, P., and Schipper, A.M., “Entry descent and landing systems for future missions,” Acta Astronautica, Vol. 67, 2010, pp. 173-179.

    Google Scholar 

  32. Shuang, L., and BoMing, Z., “Experimental study on a transpiration cooling thermal protection system,” Science China, Vol. 53, 2010, pp. 2765-2771.

    Google Scholar 

  33. “Space engineering. Thermal control general requirements”, ECSS E-ST-31C, November 2008

    Google Scholar 

Further Reading

  1. Brown, C.D., “Elements of Spacecraft Design,” AIAA Educational Series, AIAA, Reston, 2002.

    Google Scholar 

  2. ESA “Space Engineering. Mechanical – Part 1: Thermal Control,” ECSS-E-30 Part 1A, April 2000.

    Google Scholar 

  3. ESA “Spacecraft Thermal Control Design Data Handbook”, ESA PSS-03-108, Issue 1, 1989.

    Google Scholar 

  4. Fortescue, P., Stark, J., and Swinerd, G., eds., “Spacecraft Systems Engineering,” 3rd edn., Wiley, Chichester, 2003.

    Google Scholar 

  5. Gilmore, D.G., ed., “Spacecraft Thermal Control Handbook, Vol. I: Fundamental Technologies,” 2nd edn., The Aerospace Press, El Segundo, 2002.

    Google Scholar 

  6. Karam, R.D., “Satellite Thermal Control for System Engineers,” Progress in Aeronautics and Astronautics, Vol. 181, AIAA, Reston, 1998.

    Google Scholar 

  7. Meseguer, J., Pérez-Grande, I., and Sanz-Andrés, A., “Spacecraft Thermal Control,” Woodhead Publishing, Oxford, 2011.

    Google Scholar 

  8. Pisacane, V.L., “Fundamentals of space systems,” Oxford University Press, Oxford, 2005.

    Google Scholar 

  9. Tribble, A.C., “The Space Environment, Implications for Spacecraft Design,” Princeton University Press, Princeton, 2003.

    Google Scholar 

Download references

Acknowledgments

Except Figs. 13.15 and 13.18, all the figures of this chapter are from [15] and the authors are indebted to Woodhead Publishing Ltd. for their permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Alonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meseguer, J., Pérez-Grande, I., Sanz-Andrés, A., Alonso, G. (2014). Thermal Systems. In: Macdonald, M., Badescu, V. (eds) The International Handbook of Space Technology. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41101-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41101-4_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41100-7

  • Online ISBN: 978-3-642-41101-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics