Skip to main content

New Insights into Ferroelectric Domain Imaging with Piezoresponse Force Microscopy

  • Chapter
Ferroelectric Crystals for Photonic Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

Abstract

Piezoresponse Force Microscopy (PFM) has become the most used technique for non-invasive mapping of ferroelectric domain patterns. For PFM imaging, no specific sample preparation is required: any clean and flat surface that can be imaged by scanning force microscopy can also be investigated by PFM. Despite its ease of use, PFM imaging allows to detect the domain distribution with high lateral resolution and an amazing sensitivity. As a consequence, the PFM mode has become a standard for commercial scanning force microscopes. PFM, however, still causes difficulties in terms of interpretation of the images obtained. The situation becomes even more delicate, when trying to obtain quantitative data based on PFM images.

In this chapter, we intend to provide a deeper insight into PFM imaging and thereby permit a more reliable interpretation of PFM images. For this purpose we point to a couple of difficulties that one may encounter in PFM imaging, possibly leading to aha moments of the reader about having seen such PFM images without having been able to make sense of it, and propose solutions to the most common challenges, such as calibration to name the most prominent one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Fejer, G.A. Magel, D.H. Jundt, R.L. Byer, Quasi-phase-matched 2nd harmonic-generation—tuning and tolerances. IEEE J. Quantum Electron. 28, 2631–2654 (1992)

    Article  Google Scholar 

  2. L.E. Myers, R.C. Eckardt, M.M. Fejer, R.L. Byer, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 12, 2102–2116 (1995)

    Article  CAS  Google Scholar 

  3. H. Ishiwara, M. Okuyama, Y. Arimoto, Ferroelectric Random Access Memories: Fundamentals and Applications, vol. 93 (Springer, Berlin, 2004)

    Book  Google Scholar 

  4. E. Soergel, Visualization of ferroelectric domains in bulk single crystals. Appl. Phys. B 81, 729–752 (2005)

    Article  CAS  Google Scholar 

  5. E. Soergel, Piezoresponse force microscopy (PFM). J. Phys. D, Appl. Phys. 44, 464003 (2011)

    Article  Google Scholar 

  6. R.E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure (Oxford University Press, London, 2005)

    Google Scholar 

  7. J. Erhart, Domain wall orientations in ferroelastics and ferroelectrics. Phase Transit. 77, 989–1074 (2004)

    Article  CAS  Google Scholar 

  8. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, New York, 2001)

    Book  Google Scholar 

  9. B.A. Strukov, A.P. Levanyuk, Ferroelectric Phenomena in Crystals (Springer, Berlin, 1998)

    Book  Google Scholar 

  10. J.A. Gonzalo, B. Jiménez (eds.), Ferroelectricity: The Fundamentals Collection (Wiley-VCH, Weinheim, 2005)

    Google Scholar 

  11. R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A 37, 191–203 (1985)

    Article  Google Scholar 

  12. J.C. Brice, Crystal Growth Processes (Halsted, New York, 1986)

    Google Scholar 

  13. J.F. Nye, Physical Properties of Crystals (Oxford University Press, London, 1985)

    Google Scholar 

  14. V. Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura, The role of nonstoichiometry in 180 domain switching of LiNbO3 crystals. Appl. Phys. Lett. 72, 1981–1983 (1998)

    Article  CAS  Google Scholar 

  15. M.C. Wengler, B. Fassbender, E. Soergel, K. Buse, Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources. J. Appl. Phys. 96, 2816–2820 (2004)

    Article  CAS  Google Scholar 

  16. K.K. Wong, Properties of Lithium Niobate (INSPEC, London, 2002)

    Google Scholar 

  17. D. Sarid, Scanning Force Microscopy (Oxford University Press, London, 1994)

    Google Scholar 

  18. F. Johann, Á. Hoffmann, E. Soergel, Impact of electrostatic forces in contact-mode scanning force microscopy. Phys. Rev. B 81, 094109 (2010)

    Article  Google Scholar 

  19. E. Soergel, W. Krieger, V.I. Vlad, Charge distribution on photorefractive crystals observed with an atomic force microscope. Appl. Phys. A 66, S337–S340 (1998)

    Article  CAS  Google Scholar 

  20. M. Lilienblum, Á. Hoffmann, E. Soergel, P. Becker, L. Bohatý, M. Fiebig, Piezoresponse force microscopy at sub-room temperatures. Rev. Sci. Instrum. 84, 043703 (2013). doi:10.1063/1.4801464 (5 pages)

    Article  CAS  Google Scholar 

  21. Á. Hoffmann, T. Jungk, E. Soergel, Crosstalk correction in atomic force microscopy. Rev. Sci. Instrum. 78, 016101 (2007)

    Article  CAS  Google Scholar 

  22. M. Reinstaedtler, U. Rabe, V. Scherer, J.A. Turner, W. Arnold, Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry. Surf. Sci. 532–535, 1152–1158 (2003)

    Article  Google Scholar 

  23. J.A. Christman, R.R. Woolcott Jr., A.I. Kingon, R.J. Nemanich, Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. 73, 3851–3853 (1998)

    Article  CAS  Google Scholar 

  24. T. Jungk, Á. Hoffmann, E. Soergel, Challenges for the determination of piezoelectric constants with piezoresponse force microscopy. Appl. Phys. Lett. 91, 253511 (2007)

    Article  Google Scholar 

  25. T. Jungk, Untersuchung der Abbildungsmechanismen ferroelektrischer Domänen mit dem Rasterkraftmikroskop. PhD Thesis, University of Bonn, 2006

    Google Scholar 

  26. M. Labardi, V. Likodimos, M. Allegrini, Force-microscopy contrast mechanisms in ferroelectric domain imaging. Phys. Rev. B 61, 14390–14398 (2000)

    Article  CAS  Google Scholar 

  27. A. Agronin, M. Molotskii, Y. Rosenwaks, E. Strassburg, A. Boag, S. Mutchnik, G. Rosenman, Nanoscale piezoelectric coefficient measurements in ionic conducting ferroelectrics. J. Appl. Phys. 97, 084312 (2005)

    Article  Google Scholar 

  28. J.W. Hong, K.H. Noh, S. Park, S.I. Kwun, Z.G. Khim, Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy. Phys. Rev. B 58, 5078–5084 (1998)

    Article  CAS  Google Scholar 

  29. M. Shvebelman, P. Urenski, R. Shikler, G. Rosenman, Y. Rosenwaks, M. Molotskii, Scanning probe microscopy of well-defined periodically poled ferroelectric domain structure. Appl. Phys. Lett. 80, 1806–1808 (2002)

    Article  CAS  Google Scholar 

  30. K. Takata, Comment on “Domain structure and polarization reversal in ferroelectrics studied by atomic force microscopy” [J. Vac. Sci. Technol. B 13, 1095, 1995]. J. Vac. Sci. Technol. B 14, 3393–3394 (1996)

    Article  CAS  Google Scholar 

  31. H. Ogi, Y. Kawasaki, M. Hirao, H. Ledbetter, Acoustic spectroscopy of lithium niobate: elastic and piezoelectric coefficients. J. Appl. Phys. 92, 2451–2456 (2002)

    Article  CAS  Google Scholar 

  32. O. Kolosov, A. Gruverman, J. Hatano, K. Takahashi, H. Tokumoto, Nanoscale visualization and control of ferroelectric domains by atomic force microscopy. Phys. Rev. Lett. 74, 4309–4312 (1995)

    Article  CAS  Google Scholar 

  33. M. Labardi, V. Likodimos, M. Allegrini, Resonance modes of voltage-modulated scanning force microscopy. Appl. Phys. A 72, S79–S85 (2001)

    Article  Google Scholar 

  34. S. Hong, H. Shin, J. Woo, K. No, Effect of cantilever-sample interaction on piezoelectric force microscopy. Appl. Phys. Lett. 80, 1453–1455 (2002)

    Article  CAS  Google Scholar 

  35. C. Harnagea, M. Alexe, D. Hesse, A. Pignolet, Contact resonances in voltage-modulated force microscopy. Appl. Phys. Lett. 83, 338–340 (2003)

    Article  CAS  Google Scholar 

  36. C.H. Xu, C.H. Woo, S.Q. Shi, Y. Wang, Effects of frequencies of AC modulation voltage on piezoelectric-induced images using atomic force microscopy. Mater. Charact. 52, 319–322 (2004)

    Article  CAS  Google Scholar 

  37. S.V. Kalinin, D.A. Bonnell, Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65, 125408 (2002)

    Article  Google Scholar 

  38. L.M. Eng, H.-J. Güntherodt, G. Rosenman, A. Skliar, M. Oron, M. Katz, D. Eger, Nondestructive imaging and characterization of ferroelectric domains in periodically poled crystals. J. Appl. Phys. 83, 5973–5977 (1998)

    Article  CAS  Google Scholar 

  39. T. Jungk, Á. Hoffmann, E. Soergel, Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy. Appl. Phys. Lett. 89, 163507 (2006)

    Article  Google Scholar 

  40. T. Jungk, Á. Hoffmann, E. Soergel, Consequences of the background in piezoresponse force microscopy on the imaging of ferroelectric domain structures. J. Microsc. 227, 72–78 (2007)

    Article  CAS  Google Scholar 

  41. W. Heywang, H. Thomann, Tailoring of piezoelectric ceramics. Annu. Rev. Mater. Sci. 14, 27–47 (1984)

    Article  CAS  Google Scholar 

  42. T. Jungk, Á. Hoffmann, E. Soergel, Influence of the inhomogeneous field at the tip on quantitative piezoresponse force microscopy. Appl. Phys. A 86, 353–355 (2007)

    Article  CAS  Google Scholar 

  43. G. Rosenman, A. Skliar, M. Oron, M. Katz, Polarization reversal in KTiOPO4 crystals. J. Phys. D 30, 277–282 (1997)

    Article  CAS  Google Scholar 

  44. J. Padilla, W. Zhong, D. Vanderbilt, First-principles investigation of 180 domain walls in BaTiO3. Phys. Rev. B 53, R5969–R5973 (1996)

    Article  CAS  Google Scholar 

  45. T. Jungk, Á. Hoffmann, E. Soergel, Impact of the tip radius on the lateral resolution in piezoresponse force microscopy. New J. Phys. 10, 013019 (2008)

    Article  Google Scholar 

  46. F. Johann, Y.J. Ying, T. Jungk, Á. Hoffmann, C.L. Sones, R.W. Eason, S. Mailis, E. Soergel, Depth resolution of piezoresponse force microscopy. Appl. Phys. Lett. 94, 172904 (2009)

    Article  Google Scholar 

  47. T. Jungk, Á. Hoffmann, E. Soergel, Contrast mechanisms for the detection of ferroelectric domains with scanning force microscopy. New J. Phys. 11, 033029 (2009)

    Article  Google Scholar 

  48. D.A. Scrymgeour, V. Gopalan, Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall. Phys. Rev. B 72, 024103 (2005)

    Article  Google Scholar 

  49. J. Wittborn, C. Canalias, K.V. Rao, R. Clemens, H. Karlsson, F. Laurell, Nanoscale imaging of domains and domain walls in periodically poled ferroelectrics using atomic force microscopy. Appl. Phys. Lett. 80, 1622–1624 (2002)

    Article  CAS  Google Scholar 

  50. T. Jungk, Á. Hoffmann, E. Soergel, Detection mechanism for ferroelectric domain boundaries with lateral force microscopy. Appl. Phys. Lett. 89, 042901 (2006)

    Article  Google Scholar 

  51. V. Likodimos, M. Labardi, M. Allegrini, N. Garcia, V.V. Osipov, Surface charge compensation and ferroelectric domain structure of triglycine sulfate revealed by voltage-modulated scanning force microscopy. Surf. Sci. 490, 76–84 (2001)

    Article  CAS  Google Scholar 

  52. S.V. Kalinin, D.A. Bonnell, Local potential and polarization screening on ferroelectric surfaces. Phys. Rev. B 63, 125411 (2001)

    Article  Google Scholar 

  53. F. Johann, T. Jungk, M. Lilienblum, Á. Hoffmann, E. Soergel, Lateral signals in piezoresponse force microscopy at domain boundaries of ferroelectric crystals. Appl. Phys. Lett. 97, 102902 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabeth Soergel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jungk, T., Hoffmann, Á., Soergel, E. (2014). New Insights into Ferroelectric Domain Imaging with Piezoresponse Force Microscopy. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41086-4_8

Download citation

Publish with us

Policies and ethics