Skip to main content

Photonic Bandgap Properties of Lithium Niobate

  • Chapter
  • 2196 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 91))

Abstract

The development of all-optical, acousto-optical or electro-optical photonic crystals (PhCs) represents a stimulating challenge for the production of advanced functionalities in compact optical devices. LiNbO3 appears as an excellent candidate for such realizations, due to its well-known nonlinear, piezoelectric and electro-optic properties. Two main challenges need however to be overcome before LiNbO3 PhCs can be integrated in photonic circuits. The first one is related to the weak confinement of light in LiNbO3 waveguides, and the second one is the difficulty of producing high aspect ratio photonic crystals.

Easy-to-implement technologies are presented, in the view of producing high aspect ratio LiNbO3 PhCs in confined optical waveguides. Firstly, the photonic bandgap properties of lithium niobate are investigated theoretically and experimentally. A striking phenomenon of enhanced electro-optic coefficient is shown. Then, the fabrication processes are described, relying on optical grade dicing and focused ion beam milling. As a result, photonic crystals integrated into ridges waveguides show unexpectedly high sensitivity toward temperatures. Some perspectives for future work are given, including to the dense 3D integration of compact optical devices such as modulators, spectral filters or electric field sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton University Press, New Jersey, 1995)

    Google Scholar 

  2. http://www.srubiosystems.com/Products/BINDbioSens.html

  3. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl. Phys. Lett. 75, 932 (1999)

    Article  CAS  Google Scholar 

  4. Y. Jiang, W. Jiang, L. Gu, X. Chen, R.T. Chen, 80-micron interaction length silicon photonic crystal waveguide modulator. Appl. Phys. Lett. 87(22), 221105 (2005)

    Article  Google Scholar 

  5. N.G.R. Broderick, G.W. Ross, H.L. Richardson, D.C. Hanna, Hexagonally poled lithium niobate: a two dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345 (2000)

    Article  CAS  Google Scholar 

  6. M. Roussey, M.-P. Bernal, N. Courjal, F.I. Baida, R. Salut, Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 89, 241110 (2006)

    Article  Google Scholar 

  7. N. Courjal, S. Benchabane, J. Dahdah, G. Ulliac, Y. Gruson, V. Laude, Acousto-optically tunable lithium niobate photonic crystal. Appl. Phys. Lett. 96(13), 131103 (2010)

    Article  Google Scholar 

  8. M.-P. Bernal, J. Amet, J. Safioui, F. Devaux, M. Chauvet, J. Salvi, F.I. Baida, Pyroelectric control of the superprism effect in a lithium niobate photonic crystal in slow light configuration. Appl. Phys. Lett. 98(7), 071101 (2011)

    Article  Google Scholar 

  9. M. Soljačić, S.G. Johnson, Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19(9), 2052–2059 (2002)

    Article  Google Scholar 

  10. M. Roussey, F.I. Baida, M.-P. Bernal, Experimental and theoretical observations of the slow-light effect on a tunable photonic crystal. J. Opt. Soc. Am. B 24(6), 1416–1422 (2007)

    Article  CAS  Google Scholar 

  11. G.W. Burr, S. Diziain, M.-P. Bernal, The impact of finite-depth cylindrical and conical holes in lithium niobate photonic crystals. Opt. Express 16(9), 6302–6316 (2008)

    Article  CAS  Google Scholar 

  12. L. Razzari, D. Trägger, M. Astic, P. Delaye, R. Frey, G. Roosen, R. André, Kerr and four-wave mixing spectroscopy at the band edge of one-dimensional photonic crystals. Appl. Phys. Lett. 86, 231106 (2005)

    Article  Google Scholar 

  13. P. Ferraro, S. Grilli, Modulating the thickness of the resist pattern for controlling size and depth of submicron reversed domains in lithium niobate. Appl. Phys. Lett. 89(13), 133111 (2006)

    Article  Google Scholar 

  14. D.W. Ward, E.R. Statz, K.A. Nelson, Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining. Appl. Phys. A, Mater. Sci. Process. 86(1), 49–51 (2007)

    CAS  Google Scholar 

  15. F. Laurell, J. Webjörn, G. Arvidsson, J. Holmberg, Wet etching of proton-exchanged lithium niobate—a novel processing technique. J. Lightwave Technol. 10(11), 1606–1610 (1992)

    Article  CAS  Google Scholar 

  16. T.-J. Wang, C.-F. Huang, W.S. Wang, P.-K. Wei, A novel wet-etching method using electric-field-assisted proton exchange in LiNbO3. J. Lightwave Technol. 22(7), 1764–1767 (2004)

    Article  CAS  Google Scholar 

  17. D.M. Gill, D. Jacobson, C.A. White, D.W. Jones, Y. Shi, W.J. Minford, A. Harris, Ridged LiNbO3 modulators fabricated by a novel oxygen-ion implant/wet-etch technique. J. Lightwave Technol. 22(3), 887–890 (2004)

    Article  CAS  Google Scholar 

  18. H. Hu, A.P. Milenin, R.B. Wehrspohn, H. Hermann, W. Sohler, Plasma etching of proton-exchanged lithium niobate. J. Vac. Sci. Technol. A 24(4), 1012–1015 (2006)

    Article  CAS  Google Scholar 

  19. G. Ulliac, N. Courjal, H.M.H. Chong, R.M. De La Rue, Batch process for the fabrication of LiNbO3 photonic crystals using proton exchange followed by CHF3 reactive ion etching. Opt. Mater. 31(2), 196–200 (2008)

    Article  CAS  Google Scholar 

  20. S. Yin, Lithium niobate fibers and waveguides: fabrication and applications. Proc. IEEE 87, 1962 (1999)

    Article  CAS  Google Scholar 

  21. F. Lacour, N. Courjal, M.P. Bernal, A. Sabac, C. Bainier, M. Spajer, Nanostructuring lithium niobate substrates by focused ion beam milling. Opt. Mater. 27(8), 1421–1425 (2005)

    Article  CAS  Google Scholar 

  22. M. Roussey, M.-P. Bernal, N. Courjal, F.I. Baida, Experimental and theoretical characterization of a lithium niobate photonic crystal. Appl. Phys. Lett. 87, 241101 (2005)

    Article  Google Scholar 

  23. E. Strake, G.P. Bava, I. Montrosset, Guided modes of Ti:LiNbO3 channel waveguides. a novel quasi-analytical technique in comparison with the scalar finite-element method channel. J. Lightwave Technol. 6(6), 1126–1135 (1988)

    Article  Google Scholar 

  24. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, L. Riviere, Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters. J. Lightwave Technol. 5(5), 700 (1987)

    Article  Google Scholar 

  25. T. Maciak, M. Sokolowski, Fabrication of proton-exchange optical waveguides in X-cut lithium niobate. Opt. Appl. XIX(4), 423–427 (1989)

    Google Scholar 

  26. D. Marcuse, D. Marcuse, Solution of the wave equation for general dielectric waveguides by the Galerkin method. IEEE J. Quantum Electron. 28(2), 459–465 (1992)

    Article  Google Scholar 

  27. R. Geiss, S. Diziain, R. Iliew, C. Etrich, H. Hartung, N. Janunts, F. Schrempel, F. Lederer, T. Pertsch, E.-B. Kley, Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett. 97, 131109 (2010)

    Article  Google Scholar 

  28. G. Si, E.J. Teo, A.A. Bettiol, J. Teng, A.J. Danner, Suspended slab and photonic crystal waveguides in lithium niobate. J. Vac. Sci. Technol. B 28(2), 316–320 (2010)

    Article  CAS  Google Scholar 

  29. I.P. Kaminow, V. Ramaswamy, R.V. Schmidt, E.H. Turner, Lithium niobate ridge waveguide modulator. Appl. Phys. Lett. 24, 622 (1974)

    Article  CAS  Google Scholar 

  30. H. Haga, M. Izutsu, T. Sueta, LiNbO traveling-wave light modulator/switch with an etched groove. IEEE J. Quantum Electron. QE-22(6), 902–906 (1986)

    Article  CAS  Google Scholar 

  31. H. Nagata, N. Mitsugi, K. Shima, M. Tamai, E.M. Haga, Growth of crystalline LiF on CF4 plasma etched LiNbO3 substrates. J. Cryst. Growth 187(3–4), 573 (1998)

    Article  CAS  Google Scholar 

  32. Y. Tan, F. Chen, Optical ridge waveguides preserving the thermo-optic features in LiNbO3 crystals fabricated by combination of proton implantation and selective wet etching. Opt. Express 18(11), 11444 (2010)

    Article  CAS  Google Scholar 

  33. I.E. Barry, G.W. Ross, P.G.R. Smith, R.W. Eason, Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains. Appl. Phys. Lett. 74(4–5), 1487 (1999)

    Article  CAS  Google Scholar 

  34. V. Dobrusin, S. Rushin, L. Shpisman, Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides. Opt. Mater. 29(12), 1630 (2007)

    Article  CAS  Google Scholar 

  35. H. Hu, R. Ricken, W. Sohler, Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Appl. Phys. B, Lasers Opt. 98(4), 677–679 (2010)

    Article  CAS  Google Scholar 

  36. K. Mizuuchi, T. Sugita, K. Yamamoto, T. Kawaguchi, T. Yoshino, M. Imaeda, Efficient 340-nm light generation by a ridge-type waveguide in a first-order periodically poled MgO:LiNbO3. Opt. Lett. 28, 1344–1346 (2003)

    Article  CAS  Google Scholar 

  37. N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, H.-H. Lu, M.-P. Bernal, High aspect ratio lithium niobate ridge waveguides fabricated by optical grade dicing. J. Phys. D, Appl. Phys. 44, 305101 (2011)

    Article  Google Scholar 

  38. J.D. Brownridge, Pyroelectric X-ray generator. Nature 358, 287–288 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J.M. Merolla, T. Sylvestre and M. Roussey for fruitful discussions and to B. Guichardaz, R. Salut, L. Robert, V. Petrini, J.Y. Rauch and D. Bitschene for assistance in the various technological operations. This work was supported by the Action Concertée Incitative under project NANO #37 COBIAN, by the ANR “Matériaux et Procédés pour les Produits Innovants” under project CHARADE, and by the region of Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-P. Bernal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Courjal, N. et al. (2014). Photonic Bandgap Properties of Lithium Niobate. In: Ferraro, P., Grilli, S., De Natale, P. (eds) Ferroelectric Crystals for Photonic Applications. Springer Series in Materials Science, vol 91. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41086-4_12

Download citation

Publish with us

Policies and ethics