Advertisement

A Generic, Robust and Fully-Automatic Workflow for 3D CT Liver Segmentation

  • Romane Gauriau
  • Rémi Cuingnet
  • Raphael Prevost
  • Benoit Mory
  • Roberto Ardon
  • David Lesage
  • Isabelle Bloch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Liver segmentation in 3D CT images is a fundamental step for surgery planning and follow-up. Robustness, automation and speed are required to fulfill this task efficiently. We propose a fully-automatic workflow for liver segmentation built on state-of-the-art algorithmic components to meet these requirements. The liver is first localized using regression forests. A liver probability map is computed, followed by a global-to-local segmentation strategy using a template deformation framework. We evaluate our method on the SLIVER07 reference database and confirm its state-of-the-art results on a large, varied database of 268 CT volumes. This extensive validation demonstrates the robustness of our approach to variable fields of view, liver contrast, shape and pathologies. Our framework is an attractive tradeoff between robustness, accuracy (mean distance to ground truth of 1.7mm) and computational speed (46s). We also emphasize the genericity and relative simplicity of our framework, which requires very limited liver-specific tuning.

Keywords

Liver segmentation fully-automatic segmentation template deformation regression forest 3D-CT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murthy, R., Nunez, R., Szklaruk, J., Erwin, W., Madoff, D.C., Gupta, S., Ahrar, K., Wallace, M.J.: Yttrium-90 microsphere therapy for hepatic malignancy: Devices, indications, technical considerations, and potential complications. Radiographics 25(suppl. 1), 41–55 (2005)CrossRefGoogle Scholar
  2. 2.
    Campadelli, P., Casiraghi, E., Esposito, A.: Liver segmentation from computed tomography scans: A survey and a new algorithm. Artificial Intelligence in Medicine 45(2-3), 185–196 (2009)CrossRefGoogle Scholar
  3. 3.
    Mharib, A.M., Ramli, A.R., Mashohor, S., Mahmood, R.B.: Survey on liver CT image segmentation methods. Artificial Intelligence Review 37(2), 83–95 (2011)CrossRefGoogle Scholar
  4. 4.
    Heimann, T., Styner, M., van Ginneken, B.: Sliver07 (2007), http://www.sliver07.org (accessed: May 12, 2013)
  5. 5.
    Heimann, T., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Transactions on Medical Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  6. 6.
    Ling, H., Zhou, S.K., Zheng, Y., Georgescu, B., Suehling, M., Comaniciu, D.: Hierarchical, learning-based automatic liver segmentation. In: Proc. CVPR 2008, pp. 1–8 (2008)Google Scholar
  7. 7.
    Zhang, X., Tian, J., Deng, K., Wu, Y., Li, X.: Automatic liver segmentation using a statistical shape model with optimal surface detection. IEEE Transactions on Biomedical Engineering 57(10), 2622–2626 (2010)CrossRefGoogle Scholar
  8. 8.
    Linguraru, M.G., Sandberg, J.K., Li, Z., Shah, F., Summers, R.M.: Automated segmentation and quantification of liver and spleen from CT images using normalized probabilistic atlases and enhancement estimation. Medical Physics 37(2), 771 (2010)CrossRefGoogle Scholar
  9. 9.
    Cuingnet, R., Prevost, R., Lesage, D., Cohen, L.D., Mory, B., Ardon, R.: Automatic detection and segmentation of kidneys in 3D CT images using random forests. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part III. LNCS, vol. 7512, pp. 66–74. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Criminisi, A., Robertson, D., Konukoglu, E., Shotton, J., Pathak, S., White, S., Siddiqui, K.: Regression forests for efficient anatomy detection and localization in computed tomography scans. Medical Image Analysis (in press, 2013)Google Scholar
  11. 11.
    Mory, B., Somphone, O., Prevost, R., Ardon, R.: Real-time 3D image segmentation by user-constrained template deformation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012, Part I. LNCS, vol. 7510, pp. 561–568. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Transactions on Medical Imaging 29, 196–205 (2010)CrossRefGoogle Scholar
  13. 13.
    Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image and Vision Computing 21(13-14), 1145–1153 (2003)CrossRefGoogle Scholar
  14. 14.
    Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Transactions on Pattern Analaysis and Machine Intelligence 14(2), 239–256 (1992)CrossRefGoogle Scholar
  15. 15.
    He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proc. MICCAI Workshop 3D Segmentation in the Clinic: A Grand Challenge, pp. 109–116 (2007)Google Scholar
  17. 17.
    Wimmer, A., Soza, G., Hornegger, J.: A generic probabilistic active shape model for organ segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part II. LNCS, vol. 5762, pp. 26–33. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Linguraru, M.G., Richbourg, W.J., Watt, J.M., Pamulapati, V., Summers, R.M.: Liver and tumor segmentation and analysis from CT of diseased patients via a generic affine invariant shape parameterization and graph cuts. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 198–206. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Huang, C., Jia, F., Li, Y., Zhang, X., Luo, H., Fang, C., Fan, Y.: Fully automatic liver segmentation using probability atlas registration. In: International Conference on Electronics, Communications and Control 2012, pp. 126–129 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Romane Gauriau
    • 1
    • 2
  • Rémi Cuingnet
    • 2
  • Raphael Prevost
    • 2
  • Benoit Mory
    • 2
  • Roberto Ardon
    • 2
  • David Lesage
    • 2
  • Isabelle Bloch
    • 1
  1. 1.CNRS LTCIInstitut Mines-Telecom, Telecom ParisTechParisFrance
  2. 2.Philips Research MediSysSuresnes CedexFrance

Personalised recommendations