Advertisement

Personalised Estimation of the Arterial Input Function for Improved Pharmacokinetic Modelling of Colorectal Cancer Using dceMRI

  • Benjamin Irving
  • Lydia Tanner
  • Monica Enescu
  • Manav Bhushan
  • Esme J. Hill
  • Jamie Franklin
  • Ewan M. Anderson
  • Ricky A. Sharma
  • Julia A. Schnabel
  • Michael Brady
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

dceMRI is becoming a key modality for tumour characterisation and monitoring of response to therapy, because of the ability to identify the underlying tumour physiology. Pharmacokinetic (PK) models relate the contrast enhancement seen in dceMRI to physiological parameters but require accurate measurement of the AIF, the time-dependant contrast concentration in blood plasma. In this study, a novel method is introduced that overcomes the challenges of direct AIF measurement, by automatically estimating the AIF from the tumour tissue. This approach was evaluated on synthetic data (10% noise) and achieved a relative error in K trans and k ep of 11.8 ±3.5% and 25.7 ±4.7 %, respectively, compared to 41 ±15 % and 60 ±32 % using a population model. The method improved the fit of the PK model to clinical colorectal cancer cases, was stable for independent regions in the tumour, and showed improved localisation of the PK parameters. This demonstrates that personalised AIF estimation can lead to more accurate PK modelling.

Keywords

pharmacokinetic modelling arterial input function dceMRI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rijpkema, M., Kaanders, J.H., Joosten, F.B., van der Kogel, A.J., Heerschap, A.: Method for quantitative mapping of dynamic MRI contrast agent uptake in human tumors. Magn. Reson. Imaging 14, 457–463 (2001)CrossRefGoogle Scholar
  2. 2.
    Parker, G., Roberts, C., Macdonald, A., Buonaccorsi, G., Cheung, S., Buckley, D., Jackson, A., Watson, Y., Davies, K., Jayson, G.: Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn. Reson. Med. 56, 993–1000 (2006)CrossRefGoogle Scholar
  3. 3.
    Enescu, M., Bhushan, M., Hill, E.J., Franklin, J., Anderson, E.M., Sharma, R.A., Schnabel, J.A.: pCT derived arterial input function for improved pharmacokinetic analysis of longitudinal dceMRI for colorectal cancer. In: SPIE, p. 86690 (2013)Google Scholar
  4. 4.
    Orton, M.R., D’Arcy, J.A., Walker-Samuel, S., Hawkes, D.J., Atkinson, D., Collins, D.J., Leach, M.O.: Computationally efficient vascular input function models for quantitative kinetic modelling using DCE-MRI. Phys. Med. Biol. 53, 1225–1239 (2008)CrossRefGoogle Scholar
  5. 5.
    Liberman, G., Louzoun, Y., Colliot, O., Ben Bashat, D.: T 1 Aapping, AIF and Pharmacokinetic Parameter Extraction from Dynamic Contrast Enhancement MRI Data. In: Liu, T., Shen, D., Ibanez, L., Tao, X. (eds.) MBIA 2011. LNCS, vol. 7012, pp. 76–83. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Fluckiger, J.U., Schabel, M.C., DiBella, E.V.R.: Model-based blind estimation of kinetic parameters in dynamic contrast enhanced (DCE)-MRI. Magn. Reson. Med. 62, 1477–1486 (2009)CrossRefGoogle Scholar
  7. 7.
    Tofts, P.S., Brix, G., Buckley, D.L., Evelhoch, J.L., Henderson, E., Knopp, M.V., Larsson, H.B.W., Lee, T.Y., Mayr, N.A., et al.: Parker: Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. Magn. Reson. Imaging 10, 223–232 (1999)CrossRefGoogle Scholar
  8. 8.
    Bradley, D.P., Tessier, J.L., Checkley, D., Kuribayashi, H., Waterton, J.C., Kendrew, J., Wedge, S.R.: Effects of AZD2171 and vandetanib (ZD6474, Zactima) on haemodynamic variables in an SW620 human colon tumour model: an investigation using dynamic contrast-enhanced MRI and the rapid clearance blood pool contrast agent, vol. 20, pp. 42–52 (2008)Google Scholar
  9. 9.
    Tofts, P.S., Kermode, A.G.: Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17, 357–367 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benjamin Irving
    • 1
  • Lydia Tanner
    • 1
  • Monica Enescu
    • 1
  • Manav Bhushan
    • 1
  • Esme J. Hill
    • 3
  • Jamie Franklin
    • 2
  • Ewan M. Anderson
    • 2
  • Ricky A. Sharma
    • 3
  • Julia A. Schnabel
    • 1
  • Michael Brady
    • 3
  1. 1.Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
  2. 2.Department of RadiologyChurchill HospitalOxfordUK
  3. 3.Department of OncologyUniversity of OxfordOxfordUK

Personalised recommendations