Advertisement

Global Colon Geometric Structure Analysis Based on Geodesics and Conformal Flattening

  • Hao Peng
  • Rui Shi
  • Shiqing Xin
  • Xianfeng Gu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8198)

Abstract

Global geometric structure analysis plays an important role in computer vision and medical imaging. Human colon has complex geometric structures; colonic modeling has been the most challenging issue for computer aided detection and diagnosis (CADe and CADx). The increasing demand for colon modeling relies on the construction of an accurate endoscopy view for physician to locate polyps, precursors of colorectal cancer. This work focus on automatically locating the Teniae Coli, Haustral Folds and extracting centerline, which gives the global geometric structure of a colon wall surface anatomy. A series of algorithms based on geodesics and conformal flattening are proposed: auxiliary Riemannian metric algorithm for Teniae Coli tracking; geodesic clustering method for Haustral folding location; harmonic mass center method for centerline construction. Our method is fully automatic, accurate and robust. We tested our method on real colon surfaces reconstructed from CT images. The experimental results demonstrate the efficiency and efficacy of our method.

Keywords

Colon Geometric Structure Colonic Modeling Geodesics Conformal Flattening Colon Centerline Teniae Coli Haustral Folding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The American Cancer Society: Colorectal cancer facts & figures 2011-2013 (2011)Google Scholar
  2. 2.
    Chen, J., Han, Y.: Shortest paths on a polyhedron. In: Proceedings of the Sixth Annual Symposium on Computational Geometry, SCG 1990, pp. 360–369 (1990)Google Scholar
  3. 3.
    Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R.: Nondistorting flattening maps and the 3d visualization of colon ct images. IEEE Transactions on Medical Imaging 19, 665–670 (2000)CrossRefGoogle Scholar
  4. 4.
    Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening. In: ACM Symposium on Solid and Physical Modeling, pp. 85–94 (2006)Google Scholar
  5. 5.
    Huang, A., Roy, D., Franaszek, M., Summers, R.M.: Teniae coli guided navigation and registration for virtual colonoscopy. IEEE Visualization, 279–285 (2005)Google Scholar
  6. 6.
    Huang, A., Roy, D., Summers, R.M., Franaszek, M., Petrick, N., Choi, J., Pickhardt, P.: Tenniae coli-based circumferential localization system for ct colonography: Feasibility study. Radiology 243, 551–560 (2007)CrossRefGoogle Scholar
  7. 7.
    Lamy, J., Summers, R.M.: Teniæ coli detection from colon surface: Extraction of anatomical markers for virtual colonoscopy. In: Bebis, G., et al. (eds.) ISVC 2007, Part I. LNCS, vol. 4841, pp. 199–207. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Liang, Z., Wang, S.: An em approach to map solution of segmenting tissue mixtures: A numerical analysis, vol. 28, pp. 297–310 (2009)Google Scholar
  9. 9.
    Micha, S., Amir, S.: On shortest paths in polyhedral spaces. In: Proceedings of ACM Symposium on Theory of Computing, STOC 1984, pp. 144–153 (1984)Google Scholar
  10. 10.
    Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM J. Comput. 16(4), 647–668 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press, New York (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Summers, R.M., Yao, J., Pickhardt, P.J., Franaszek, M., Bitter, I., Brickman, D., Krishna, V., Choi, J.R.: Computed tomographic virtual colonoscopy computer-aided polyp detection in a screening population. Gastroenterology 129, 1832–1844 (2005)CrossRefGoogle Scholar
  13. 13.
    Hampshire, T., Roth, H.R., Helbren, E., Plumb, A., Boone, D., Slabaugh, G., Halligan, S., Hawkes, D.J.: Endoluminal surface registration for ct colonography using haustral fold matching. Medical Image Analysis 17(8), 946–958 (2013)CrossRefGoogle Scholar
  14. 14.
    Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., Kaufman, A.: Automatic centerline extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging 21, 1450–1460 (2002)CrossRefGoogle Scholar
  15. 15.
    Wang, Z., Li, B., Liang, Z.: Feature-based texture display for detection of colonic polyps on flattened colon volume. In: Intl. Conf. of IEEE Engineering in Medicine and Biology (2005)Google Scholar
  16. 16.
    Xin, S.Q., Wang, G.J.: Improving chen and han’s algorithm on the discrete geodesic problem. ACM Trans. Graph. 28, 1–104 (2009)CrossRefGoogle Scholar
  17. 17.
    Ge, Y., Stelts, D., Wang, J., Vining, D.: Computing the centerline of a colon: A robust and efficient method based on 3-d skeleton. Journal of Computer Assisted Tomography 23, 786–794 (1999)CrossRefGoogle Scholar
  18. 18.
    Zeng, W., Marino, J., Chaitanya Gurijala, K., Gu, X., Kaufman, A.: Supine and prone colon registration using quasi-conformal mapping. IEEE Transactions on Visualization and Computer Graphics 16(6), 1348–1357 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhu, H., Barish, M., Pickhardt, P., Liang, Z.: Haustral fold segmentation with curvature-guided level set evolution. IEEE Transactions on Biomedical Engineering 60, 321–331 (2013)CrossRefGoogle Scholar
  20. 20.
    Zhu, H., Li, L., Fan, Y., Lin, Q., Lu, H., Gu, X., Liang, Z.: Automatic teniae coli detection for computed tomography colonography. In: SPIE, Medical Imaging (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hao Peng
    • 1
  • Rui Shi
    • 1
  • Shiqing Xin
    • 2
  • Xianfeng Gu
    • 1
  1. 1.Department of Computer ScienceStony Brook UniversityStony BrookUSA
  2. 2.Institute of Computer Science & TechnologyNingbo UniversityChina

Personalised recommendations